
Connecting Apama Applications to External
Components

Version 10.11.3

April 2022

This document applies to Apama 10.11.3 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2013-2022 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
https://softwareag.com/licenses/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software
AG Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

Document ID: PAM-EXT-10113-20220411

https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html

Table of Contents

About this Guide..9
Documentation roadmap..10
Online Information and Support...11
Data Protection...12

I Working with Connectivity Plug-ins...13
1 Getting Started with Connectivity Plug-ins..15

Concepts..16
Adding the connectivity bundles..19
Specifying the main settings in the properties file..20
Specifying the settings for the connectivity chains in the YAML file...............................20
Controlling how the correlator interacts with a chain...21
Using codecs...21
Writing EPL..21

2 Using Connectivity Plug-ins..23
Overview of using connectivity plug-ins...24
Static and dynamic connectivity chains...26
Configuration file for connectivity plug-ins..26
Host plug-ins and configuration...30
Translating EPL events using the apama.eventMap host plug-in....................................32
Using reliable transports...33
Creating dynamic chains from EPL..37
Sending and receiving events with connectivity plug-ins...38
Deploying plug-in libraries..40

3 Developing Connectivity Plug-ins..41
Chain components and messages..42
Requirements of a plug-in class...43
Requirements of a transport chain manager plug-in class..47
Building plug-ins...49
C++ data types..51
Map contents used by the apama.eventMap host plug-in..54
Metadata values...58
Lifetime of connectivity plug-ins...60
Creating dynamic chains from a chain manager plug-in..62
User-defined status reporting from connectivity plug-ins..63
Logging and configuration...65
Threading..66
Developing reliable transports..67
General notes for developing transports..70

II Standard Connectivity Plug-ins..71
4 The Universal Messaging Transport Connectivity Plug-in...73

About the Universal Messaging transport...74
Overview of using Universal Messaging in Apama applications....................................74

Connecting Apama Applications to External Components 10.11.3 iii

Setting up Universal Messaging for use by Apama...81
Configuring the Universal Messaging connectivity plug-in...82
EPL and Universal Messaging channels..91
Using Universal Messaging connectivity from EPL...91
Monitoring Apama application use of Universal Messaging...92

5 The MQTT Transport Connectivity Plug-in..93
About the MQTT transport..94
Using MQTT connectivity from EPL..94
Loading the MQTT transport...95
Configuring the connection to MQTT..95
Mapping events between MQTT messages and EPL...97
Payload for the MQTT message...98
Wildcard topic subscriptions...98
Metadata for the MQTT message..98
Restrictions...99

6 The Digital Event Services Transport Connectivity Plug-in..101
About the Digital Event Services transport...102
Using Digital Event Services connectivity from EPL...103
Reliable messaging with Digital Event Services...104

7 The HTTP Server Transport Connectivity Plug-in...107
About the HTTP server transport..108
Loading the HTTP server transport..110
Configuring the HTTP server transport...110
Handling responses in EPL..114
Serving static files..116
Mapping events between EPL and HTTP server requests..116
HTTP server security...126
Monitoring status for the HTTP server..128

8 The HTTP Client Transport Connectivity Plug-in..131
About the HTTP client transport...132
Loading the HTTP client transport...132
Configuring the HTTP client transport..133
Mapping events between EPL and HTTP client requests..136
Monitoring status for the HTTP client..153
Configuring dynamic connections to services...154
Using predefined generic event definitions to invoke HTTP services with JSON and
string payloads...154

9 The Kafka Transport Connectivity Plug-in..157
About the Kafka transport..158
Loading the Kafka transport..158
Configuring the connection to Kafka (dynamicChainManagers)..................................158
Configuring message transformations (dynamicChains)..160
Payload for the Kafka message..161
Metadata for the Kafka message...161

10 The Cumulocity IoT Transport Connectivity Plug-in..163
About the Cumulocity IoT transport..164
Configuring the Cumulocity IoT transport..165
Loading the Cumulocity IoT transport...170
Using managed objects...171
Using alarms...175

iv Connecting Apama Applications to External Components 10.11.3

Table of Contents

Using events...179
Using measurements...183
Using measurement fragments..188
Using operations..191
Receiving update notifications..195
Paging Cumulocity IoT queries...197
Invoking other parts of the Cumulocity IoT REST API...199
Invoking microservices...200
Monitoring status for Cumulocity IoT..201
Finding tenant options..202
Getting user details..203
Sample EPL...204

11 Codec Connectivity Plug-ins...209
The String codec connectivity plug-in..210
The Base64 codec connectivity plug-in...211
The JSON codec connectivity plug-in...212
The Classifier codec connectivity plug-in..216
The Mapper codec connectivity plug-in...217
The Batch Accumulator codec connectivity plug-in...221
The Message List codec connectivity plug-in..222
The Unit Test Harness codec connectivity plug-in...225
The Diagnostic codec connectivity plug-in..228

III Correlator-Integrated Support for the Java Message Service (JMS).......................................231
12 Using the Java Message Service (JMS)...233

Overview of correlator-integrated messaging for JMS..234
Getting started with simple correlator-integrated messaging for JMS..........................236
Getting started with reliable correlator-integrated messaging for JMS.........................246
Mapping Apama events and JMS messages..248
Dynamic senders and receivers...275
Durable topics..276
Receiver flow control...276
Monitoring correlator-integrated messaging for JMS status...277
Logging correlator-integrated messaging for JMS status..278
JMS configuration reference...285
Designing and implementing applications for correlator-integrated messaging for
JMS...296
Diagnosing problems when using JMS..311
JMS failures modes and how to cope with them..313

IV Working with IAF Plug-ins..317
13 The Integration Adapter Framework...319

Overview...320
Architecture..321
The transport layer..323
The codec layer...323
The Semantic Mapper layer..324
Contents of the IAF..325

14 Using the IAF...327
Connecting Apama Applications to External Components 10.11.3 v

Table of Contents

The IAF runtime...328
IAF Management – Managing a running adapter I..335
IAF Client – Managing a running adapter II...336
IAF Watch – Monitoring running adapter status..337
The IAF configuration file..339
IAF samples..364

15 C/C++ Transport Plug-in Development..369
The C/C++ transport plug-in development specification...370
Transport example...373
Getting started with transport layer plug-in development...373

16 C/C++ Codec Plug-in Development..375
The C/C++ codec plug-in development specification...376
Transport example...384
Getting started with codec layer plug-in development...384

17 C/C++ Plug-in Support APIs..387
Logging from IAF plug-ins in C/C++..388
Using the latency framework...388

18 Transport Plug-in Development in Java...391
The transport plug-in development specification for Java..392
Example...395
Getting started with Java transport layer plug-in development.....................................395

19 Java Codec Plug-in Development...397
The codec plug-in development specification for Java..398
Java codec example..403
Getting started with Java codec layer plug-in development...403

20 Plug-in Support APIs for Java...405
Logging from IAF plug-ins in Java...406
Using the latency framework...407

21 Monitoring Adapter Status..409
IAFStatusManager...411
Application interface...411
Returning information from the getStatus method..412
Connections and other custom properties...413
Asynchronously notifying IAFStatusManager of connection changes.........................414
StatusSupport...417
DataView support..420

22 Out of Band Connection Notifications...423
Mapping example..424
Ordering of out of band notifications...425

23 The Event Payload...429

V Standard IAF Plug-ins...431
24 The Database Connector IAF Adapter (ADBC)..433

Overview of using ADBC...434
Registering your ODBC database DSN on Windows...435
Adding an ADBC adapter to an Apama project...436
Configuring the Apama database connector...437
The ADBCHelper application programming interface..444
The ADBC Event application programming interface...456

vi Connecting Apama Applications to External Components 10.11.3

Table of Contents

The Visual Event Mapper...478
Playback..480
Sample applications...481
Format of events in .sim files...481

25 The File IAF Adapter (JMultiFileTransport)..483
File adapter plug-ins...484
File adapter service monitor files..485
Adding the File adapter to an Apama project...485
Configuring the File adapter..486
Overview of event protocol for communication with the File adapter.........................487
Opening files for reading..488
Specifying file names in OpenFileForReading events..490
Opening comma separated values (CSV) files..491
Opening fixed width files...492
Sending the read request..493
Requesting data from the file...493
Receiving data..493
Opening files for writing..494
LineWritten event..495
Monitoring the File adapter...496

26 The Basic File IAF Adapter (FileTransport/JFileTransport)...497
27 Codec IAF Plug-ins...499

The String codec IAF plug-in...500
The Null codec IAF plug-in..501
The Filter codec IAF plug-in..503
The XML codec IAF plug-in...507
The CSV codec IAF plug-in..521
The Fixed Width codec IAF plug-in..524

VI Developing Custom Clients...529
28 The Client Software Development Kits..531

The client libraries...532
Working with event objects..534
Logging...534
Exception handling and thread safety..534

29 Engine Management API...537
30 Engine Client API..541
31 Event Service API..545
32 Scenario Service API...547

Connecting Apama Applications to External Components 10.11.3 vii

Table of Contents

viii Connecting Apama Applications to External Components 10.11.3

Table of Contents

About this Guide

■ Documentation roadmap .. 10

■ Online Information and Support ... 11

■ Data Protection ... 12

Connecting Apama Applications to External Components 10.11.3 9

ConnectingApamaApplications to External Componentsdescribes how to connect Apama applications
to any event data source, database, messaging infrastructure, or application.

Documentation roadmap

Apama provides documentation in the following formats:

HTML (available from both the documentation website and the doc folder of the Apama
installation)

PDF (available from the documentation website)

Eclipse help (accessible from Software AG Designer)

You can access the HTML documentation on your machine after Apama has been installed:

Windows. Select Start > All Programs > Software AG > Tools > Apama n.n > Apama
Documentation n.n. Note that Software AG is the default group name that can be changed
during the installation.

UNIX. Display the index.html file, which is in the doc/apama-onlinehelp directory of your
Apama installation directory.

The following guides are available:

DescriptionTitle

Describes new features and changes introducedwith the current
Apama release as well as earlier releases.

Release Notes

Summarizes all important installation information and is
intended for use with other Software AG installation guides
such as Using Software AG Installer.

Installing Apama

Provides a high-level overviewofApama, describes theApama
architecture, discussesApama concepts and introduces Software
AG Designer, which is the main development tool for Apama.

Introduction to Apama

Explains how to develop Apama applications in Software AG
Designer, which is an Eclipse-based integrated development
environment.

Using Apama with Software AG
Designer

Describes the different technologies for developing Apama
applications: EPL monitors, Apama queries, and Java. You can

Developing Apama Applications

use one or several of these technologies to implement a single
Apama application. In addition, there are C++ and Java APIs
for developing components that plug in to a correlator. You can
use these components from EPL.

Describes how to connect Apama applications to any event data
source, database, messaging infrastructure, or application.

Connecting Apama Applications to
External Components

10 Connecting Apama Applications to External Components 10.11.3

DescriptionTitle

Describes how to build and use an Apama dashboard, which
provides the ability to view and interact with DataViews. An

Building and Using Apama
Dashboards

Apama project typically uses one or more dashboards, which
are created in the Dashboard Builder. The Dashboard Viewer
provides the ability to use dashboards created in theDashboard
Builder. Dashboards can also be deployed as simpleweb pages.
Deployed dashboards connect to one or more correlators by
means of a dashboard data server or display server.

Describes how to deploy components with Software AG
Command Central, how to deploy and manage queries, and

Deploying and Managing Apama
Applications

how to deploy Apama applications using Docker and
Kubernetes. It also provides information for improvingApama
application performance by using multiple correlators, for
managing and monitoring Apama components over REST
(Representational State Transfer), and for using correlator
utilities and configuration files.

In addition to the above guides, Apama also provides the following API reference information:

API Reference for EPL (ApamaDoc)

API Reference for Java (Javadoc)

API Reference for C++ (Doxygen)

API Reference for .NET

API Reference for Python

API Reference for Component Management REST APIs

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://
documentation.softwareag.com.

In addition, you can also access the cloudproduct documentation via https://www.softwareag.cloud.
Navigate to the desired product and then, depending on your solution, go to “Developer Center”,
“User Center” or “Documentation”.

Product Training

You can find helpful product training material on our Learning Portal at https://
knowledge.softwareag.com.

Connecting Apama Applications to External Components 10.11.3 11

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://www.softwareag.cloud/
https://knowledge.softwareag.com/
https://knowledge.softwareag.com/

Tech Community

You can collaborate with Software AG experts on our Tech Community website at https://
techcommunity.softwareag.com. From here you can, for example:

Browse through our vast knowledge base.

Ask questions and find answers in our discussion forums.

Get the latest Software AG news and announcements.

Explore our communities.

Go to our public GitHub andDocker repositories at https://github.com/softwareag and https://
hub.docker.com/publishers/softwareag and discover additional Software AG resources.

Product Support

Support for Software AG products is provided to licensed customers via our Empower Portal at
https://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

Download products, updates and fixes.

Search the Knowledge Center for technical information and tips.

Subscribe to early warnings and critical alerts.

Open and update support incidents.

Add product feature requests.

Data Protection

SoftwareAGproducts provide functionalitywith respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

12 Connecting Apama Applications to External Components 10.11.3

https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/
https://github.com/softwareag/
https://hub.docker.com/publishers/softwareag/
https://hub.docker.com/publishers/softwareag/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

I Working with Connectivity Plug-ins

1 Getting Started with Connectivity Plug-ins ... 15

2 Using Connectivity Plug-ins .. 23

3 Developing Connectivity Plug-ins ... 41

Connecting Apama Applications to External Components 10.11.3 13

14 Connecting Apama Applications to External Components 10.11.3

I Working with Connectivity Plug-ins

1 Getting Started with Connectivity Plug-ins

■ Concepts .. 16

■ Adding the connectivity bundles ... 19

■ Specifying the main settings in the properties file .. 20

■ Specifying the settings for the connectivity chains in the YAML file 20

■ Controlling how the correlator interacts with a chain .. 21

■ Using codecs .. 21

■ Writing EPL .. 21

Connecting Apama Applications to External Components 10.11.3 15

Concepts
A connectivity chain is used to get events of a certain shape from a particular external source and
convert them from a given format into Apama events and back. There will be at least one chain
for each event source. There could also be one chain for each format of events you want to receive
from that source. There can be multiple instances of a given chain definition in the configuration
file, corresponding to multiple connections to that source. The choice of which chain to use for a
given event may vary between different sources.

All chains begin with a host plug-in, which defines how events are converted into Apama events.
All chains endwith a transport,which determines the external sourcewe are connecting to. Between
these you have an ordered sequence of any number of codecs. These are used to convert messages
from the format produced by the transport to that which the host plug-in will consume and vice
versa.Messages are passed between the elements in a connectivity chain using an abstractmessage
formatmade up ofmaps, lists, byte arrays and various primitive formats. Aswell as the (arbitrary)
payload, there is also a (nested) map of metadata with string keys and any of the supported types
as values.

The following diagram shows a typical connectivity chain:

16 Connecting Apama Applications to External Components 10.11.3

1 Getting Started with Connectivity Plug-ins

The connectivity chain in the above diagram uses several plug-ins and codecs:

The host plug-in is the connection between the correlator and the chain of codecs that
manipulate and transform the messages as they pass through the chain. There are two host
plug-ins to choose from:

apama.eventMap. This is the most common choice for a host plug-in. It produces and
consumes Apama events as a map with the keys being the names of the fields in the event
and the metadata.sag.type element set to the name of the event.

apama.eventString. This host plug-in consumes events in Apama's proprietary string
format. It is usually used for interaction with legacy systems such as the IAF which use
Apama's string format.

For detailed information, see “Host plug-ins and configuration” on page 30.

Any message is transformed into a compatible form for either the host or the transport as it
flows through the codec pipeline toward its destination.

The transport is the plug-in that can actually retrieve or send the message to the external
resource. This is can be one of the standard plug-ins such MQTT or HTTP (see for detailed
information) or a plug-in written by the user.

Any message passing through from a transport plug-in to the host has common features that will
be similar in most implementations. The following diagram describes the common features
(metadata and payload) and indicates some of the common values they can take.

Codecs may be of various types. The following diagram describes an incoming message
transformation:

Connecting Apama Applications to External Components 10.11.3 17

1 Getting Started with Connectivity Plug-ins

Apama provides a selection of codecs by default for converting from common formats and for use
with customer-provided codecs to provide standard transformations. The above diagramuses the
following standard codecs:

The String codec transforms an inbound message to an Apama string. It converts a buffer
(transport side) to a string (host side) by decoding it as UTF-8.

The outbound flow performs the reverse mapping in the other direction (see the diagram
below) and places a string representation of the message into an Apama string.

The JSON codec transforms the inbound message to a compatible representation. It converts
a string (transport side) to a structured type (usuallymap) by parsing it as a string JSONobject.

The outbound flow performs the reverse mapping in the other direction (see the diagram
below) and transforms a JSON-compatible representation to a JSON string in the payload.

Messages to the host are identified as a particular event type by matching patterns on the
metadata or message contents. The Classifier codec defines what the metadata.sag.typewill
be and uses rules that are triggered by values held by a field or fields in the inboundmessage.

This does not apply to outbound messages (see the diagram below).

TheMapper codec sets up themapfields ready for either the correlator or transport depending
upon the direction of the flow. It moves fields in the event around and adds default values to
missing fields. It can have different rules for different event types, and it can have symmetric

18 Connecting Apama Applications to External Components 10.11.3

1 Getting Started with Connectivity Plug-ins

rules or different rules depending on direction. towardsHost is the inbound direction, and
towardTransport is the outbound direction. Themetadata and payload keys provide the source
or destination for the values.

For detailed information (and more codecs), see “Codec Connectivity Plug-ins” on page 209.

The following diagram describes an outgoing message transformation:

Adding the connectivity bundles
You can easily add connectivity bundles, either to a new Apama project or to an existing Apama
project. You can do this in Software AG Designer or using the apama_project tool. For more
information, see "Adding adapters to projects" in Using Apama with Software AG Designer and
"Creating and managing an Apama project from the command line" in Deploying and Managing
Apama Applications.

To get started quickly, we recommend that you import the genericsendreceive sample as a project
into Software AG Designer. This is a simple generic EPL application for sending and receiving
test messages, for use with any connectivity plug-in. You can find it in the samples/connectivity_
plugin/application directory of your Apama installation. See the README.txt file in that directory
for detailed information on how to import and run this sample.

Connecting Apama Applications to External Components 10.11.3 19

1 Getting Started with Connectivity Plug-ins

With the above sample, you can add one or more connectivity bundles to the project.

You configure a connectivity plug-in by editing the properties and YAML files that come with the
connectivity bundle.

Specifying the main settings in the properties file
Edit the properties file (with the file extension .properties) which comes with the connectivity
bundle to specify the main settings such as hosts, ports, and credentials.

The properties defined in this file are used to replace specific substitution values in the YAML
file. In many cases, all the configuration that is required is in the .properties file.

See also "Using properties files" in Deploying and Managing Apama Applications.

Specifying the settings for the connectivity chains in
the YAML file
The configuration file for a connectivity plug-in describes both the chains and the plug-insmaking
up each chain. It is written in the YAML markup language. See also "Using YAML configuration
files" in Deploying and Managing Apama Applications.

Edit the YAML configuration file (with the file extension .yaml) which comeswith the connectivity
bundle and specify all required information for creating the connectivity chains.

Find out from the documentation for the standard connectivity plug-ins how connectivity chains
are created for the transport you are using. See .

If the transport provides a dynamic chainmanager, then the chains are created by the transport.
In this case, you have to provide one or more dynamicChains definitions in the YAML
configuration file so that the chains are then created from these definitions.

If the transport does not provide a dynamic chain manager, you have to choose between

defining the chains statically in your YAML configuration file using startChains, or

creating the chains dynamically from EPL using dynamicChains definitions in the YAML
configuration file.

Your decision on which transport to use affects which sections of the YAML configuration file
you have to edit. See also “Static and dynamic connectivity chains” on page 26.

Sometimes it is necessary to make more changes in the YAML configuration file. For example:

You can add custom connectivity transport plug-ins or codec plug-ins that you have built
yourself in Java or C++, or have downloaded from the Apama community. See also
“Configuration file for connectivity plug-ins” on page 26.

You can change the configuration settings for the transport. This depends on whether your
transport has a dynamic chain manager that will be either in the dynamicChainManager section

20 Connecting Apama Applications to External Components 10.11.3

1 Getting Started with Connectivity Plug-ins

and/or under the transport's name in the startChains or dynamicChains sections of the YAML
configuration file. For an example, see “Configuring the HTTP server transport” on page 110.

Note:
The Digital Event Services connectivity plug-in is an exception. In this case, the YAML
configuration file should not be modified by the user. All of the required configuration is to be
done in the properties file.

Controlling how the correlator interacts with a chain
A host plug-in controls how the correlator interacts with a chain. In the YAML configuration file,
the host plug-in is the first element in the configuration of a chain. You can configure the
apama.eventMap host plug-in, for example, to specify the following:

A default channel to send to.

A channel to subscribe to for events that are sent towards the transport.

A default event type for events that are sent towards the correlator (host).

See also “Host plug-ins and configuration” on page 30 and “Translating EPL events using the
apama.eventMap host plug-in” on page 32.

Using codecs
You can add one or more codec plug-ins to each chain which is defined in a YAML configuration
file.

For example, you can add or configure the Classifier codec to have rules that determine which
Apama event types to use for each message that comes from the transport and is sent towards the
correlator (host). Alternatively you can use the Mapper codec for more advanced cases, or for
simple caseswhere there is only one incoming event type forwhich you can set a defaultEventType
in the apama.eventMap.

Or you can add or configure the Mapper codec rules to have rules that customize the mapping
between the fields in yourApama event definitions and the payload andmetadata of the transport
messages, and that set default values in case any fields are missing. In some cases, you may wish
to write rules to get or set the metadata.sag.typewhich specifies the Apama event type, or the
metadata.sag.channelwhich specifies the correlator (EPL) channel name.

You can add, remove or configure any other standard codecs you wish to use, such as the JSON
codec. For more information, see “Codec Connectivity Plug-ins” on page 209.

Writing EPL
After you have edited the properties file for the connectivity plug-in (and maybe also the YAML
configuration file), you have to write some EPL to cover the following main steps:

Define the Apama event types for the messages you wish to send or receive.

Connecting Apama Applications to External Components 10.11.3 21

1 Getting Started with Connectivity Plug-ins

Use monitor.subscribe to subscribe to the correlator channel(s) fromwhich youwish to receive
messages from the transport. Add an event listener for these events, perhaps logging the
incoming events to check that everything is working.

Send events to any correlator channels to which the connectivity chain is subscribed. Keep in
mind that the channel names depend on the transport and how it is configured.

Call ConnectivityPlugins.onApplicationInitialized once your EPL is ready to receive
incoming messages.

For simple applications, this can be done in the onload() action.

For real applications, we recommend the following:

1. Define an event to indicate when the application is fully injected.

2. Send that event by providing an event (.evt) file, which is always sent by default after all
EPL has been injected.

3. Call ConnectivityPlugins.onApplicationInitialized once that event has been received.

If your transport does not have a dynamic chain manager and you wish to create chains
dynamically from EPL (rather than statically in YAML), you also have to create those chains
using com.softwareag.connectivity.ConnectivityPlugins.createDynamicChain.

Note:
If you use the genericsendreceive sample as recommended in “ Adding the connectivity
bundles” on page 19, all required EPL code is already available in the SendReceiveSample.mon
file.

22 Connecting Apama Applications to External Components 10.11.3

1 Getting Started with Connectivity Plug-ins

2 Using Connectivity Plug-ins

■ Overview of using connectivity plug-ins ... 24

■ Static and dynamic connectivity chains .. 26

■ Configuration file for connectivity plug-ins .. 26

■ Host plug-ins and configuration .. 30

■ Translating EPL events using the apama.eventMap host plug-in 32

■ Using reliable transports ... 33

■ Creating dynamic chains from EPL .. 37

■ Sending and receiving events with connectivity plug-ins .. 38

■ Deploying plug-in libraries .. 40

Connecting Apama Applications to External Components 10.11.3 23

Connectivity plug-ins perform a similar role to IAF adapters: both allow plug-ins to transform
and handle delivery of events. In most cases, we recommend using connectivity plug-ins instead
of the IAF for new adapters. See also "How Apama integrates with external data sources" in
Introduction to Apama, which gives the reasons for using connectivity plug-ins.

The samples/connectivity_plugin/application/genericsendreceive directory of your Apama
installation includes a simple sample which provides an easy way to get started with sending and
receiving messages to or from any connectivity plug-in. For more information, see the README.txt
file in the above directory and “Sending and receiving events with connectivity plug-ins” on
page 38.

Overview of using connectivity plug-ins
Connectivity plug-ins can be written in Java or C++, and run inside the correlator process to allow
messages to be sent and received to/from external systems. Individual plug-ins are combined
together to form chains that define the path of a message, with the correlator host process at one
end and an external system or library at the other, and with an optional sequence of message
mapping transformations between them.

You can configure connectivity plug-ins and also develop applications that use themwith Software
AGDesigner. To do so, you have to add an instance of theUser Connectivity connectivity bundle
to your project. See "Adding adapters to projects" in Using Apama with Software AG Designer or
"Creating and managing an Apama project from the command line" in Deploying and Managing
Apama Applications for more information.

A configuration file describes both the chains and the plug-ins making up each chain. The
configuration file is written using the YAML markup language, and can express structured
configuration (maps, lists and simple values) for plug-ins. The default text encoding of the
configuration file is UTF-8.

An example configuration may look like the following:
connectivityPlugins:
stringCodec:

libraryName: connectivity-string-codec
class: StringCodec

mapperCodec:
libraryName: MapperCodec
class: MapperCodec

jsonCodec:
libraryName: connectivity-json-codec
class: JSONCodec

HTTPClientTransport:
libraryName: connectivity-http-client
class: HTTPClient

startChains:
weatherService:

- apama.eventMap:
defaultEventType: com.apamax.Weather

- mapperCodec:
"*":

towardsTransport:
mapFrom:

- metadata.requestId: payload.id

24 Connecting Apama Applications to External Components 10.11.3

2 Using Connectivity Plug-ins

defaultValue:
- metadata.http.path: /data/2.5/weather?q=Cambridge,uk
- metadata.http.method: GET

- jsonCodec
- stringCodec
- HTTPClientTransport:

host: api.openweathermap.org

A chain is a combination of plug-ins with configuration. Every chain consists of the following:

Codec plug-in. Optionally, one or more codec plug-ins are responsible for applying
transformations to themessages (for example, the JSON codec in the above example) to prepare
them for the next plug-in in the chain.

Transport plug-in.One transport plug-in is responsible for sending/receivingmessages to/from
an external system (for example, HTTPClientTransport in the above example).

Host plug-in.One built-in host plug-in is responsible for sending/receiving messages to/from
the correlator process that is hosting the chain. These are built-in plug-ins (which do not need
to be specified in the connectivityPlugins stanza)which the correlator supports. Host plug-ins
determine in which format events are passed in and out of the correlator. Thus, a chain should
specify a host plug-in that is compatible with the next codec or transport element in the chain.
Host plug-ins can also specify on which channel the chain receives events from the correlator,
and can specify a default channel to send events in to the correlator (for example, apama.eventMap
in the above example).

Each transport plug-in and codec plug-in used in the chain must also be described in the
connectivityPlugins stanza. All of the plug-ins in a chain can optionally take configuration that
is specified in the configuration file nested below them.

Plug-ins can passmessages in a number of different forms (strings,maps, plug-in-specific objects).
Codecs can be used to translate from one form into another. For example, the JSON codec in the
above example would convert the map objects from the host plug-in to strings in JSON format.
Transport plug-ins and codec plug-ins written in Java and C++ may be used together in the same
chain regardless of language, using strings or maps of values to represent messages passed across
the language boundary.

Plug-in chains support sending events in both directions, to and from the external system:

An Apama application can send events to a connectivity chain in the same way as it would
send them to any other receiver connected to the correlator, that is, using the send or emit
keywords. Events from the EPL application are translated into the form specified by the host
plug-in (the first in the chain configuration). They are then passed through each codec in turn,
and then delivered to the transport. The host plug-in (apama.eventMap in the above example)
by default listens for events from the application using the chain's name as a channel name.
The host plug-in can be configured to listen on a specific set of channels with the
subscribeChannels configuration property.

Events from a connectivity chain's transport are passed through the codecs in the reverse order
and are translated by the host plug-in to Apama events which are enqueued to the Apama
application on the desired channel. The channel can be specified per event, or a default channel
can be configured in the host plug-in using the defaultChannel configuration property.

Connecting Apama Applications to External Components 10.11.3 25

2 Using Connectivity Plug-ins

See “Host plug-ins and configuration” on page 30 for more information on the above mentioned
configuration properties.

Static and dynamic connectivity chains
Chains can be created statically using a YAML configuration file or dynamically at runtime. How
the chains are created depends on the type of transport:

Some transports have a dynamic chain manager which manages chain creation in a
transport-specific way. New chains are created, for example:

in response to external requests (for example, for each connectionmade to theHTTP server
connectivity plug-in), or

when an Apama channel with a particular prefix is first used from EPL (for example, the
Universal Messaging connectivity plug-in creates a chain by default when a channel
beginning with “um:” is used from EPL, in a monitor.subscribe(...)method or a send
... to statement).

These transports always have a dynamicChainManagers section in their YAML configuration
file. The connectivity chains are created dynamically by a transport chain manager plug-in,
using chain definitions specified in dynamicChains. See “Configuration file for connectivity
plug-ins” on page 26 for information on how to configure dynamic chain managers and
dynamic chains in a YAML configuration file.

For more information on dynamic chain managers, see “Requirements of a transport chain
manager plug-in class” on page 47.

For transports that do not provide a dynamic chain manager, chains are created either

statically using the startChains section of the YAML file, or

dynamically from EPL using ConnectivityPlugins.createDynamicChain. See “Creating
dynamic chains from EPL” on page 37.

A transport that permits user-controlled chain creation never has a dynamicChainManagers
section in its YAML configuration file.

See the documentation for each transport in on how chains are created. See “Configuration file
for connectivity plug-ins” on page 26 for more details on startChains, dynamicChains and
dynamicChainManagers.

Configuration file for connectivity plug-ins
A configuration file for the connectivity plug-ins is specified using the --config option when
starting the correlatorwith the correlator executable. It is possible to specifymultiple configuration
files. See the description of the --config option in "Starting the correlator" inDeploying andManaging
Apama Applications.

A configuration file for the connectivity plug-ins is written in YAML. See also "Using YAML
configuration files" in Deploying and Managing Apama Applications.

26 Connecting Apama Applications to External Components 10.11.3

2 Using Connectivity Plug-ins

A configuration file should contain amap at the top level which has keys for connectivityPlugins
and some of startChains, dynamicChains and dynamicChainManagers.

The value of connectivityPlugins is a map which specifies how each plug-in is to be loaded.
The keys name the plug-ins, and the values specify how the host loads the plug-ins. Plug-ins
may be written in:

Java. In this case, a class key and a classpath key should exist.

The class is name of the plug-in class, which must include the package. The plug-in's
documentation specifies the class name to be used. The class is a transport, a codec or
dynamic transport chain manager. See also “Requirements of a plug-in class” on page 43.

The classpath can be either a single string or a list of strings. For example:

Single string:
classpath: one.jar

List of strings where each string is written on a new line with a preceding dash and
space:
classpath:
- one.jar
- two.jar
- three.jar

List of strings where the strings are delimited by semicolons (;). For example:
classpath: one.jar;two.jar;three.jar

Each string can name an absolute or relative jar file or directory.

An optional directory key specifies a directory which is where the jar files will be found
(unless an absolute path is specified for a classpath element).

C++. In this case, a class key and a libraryName key should exist.

The class is the base name of the class, without a package. The plug-in's documentation
specifies the class name to be used. The class is a transport, a codec or dynamic transport
chain manager. See also “Requirements of a plug-in class” on page 43.

The libraryName is the base filename name of the library, excluding the operating
system-specific prefixes and suffixes (that is, excluding the “lib” prefix and “.so” suffix for
UNIX, and the “.dll”" suffix for Windows).

An optional directory key specifies a directory which is where the library will be found
(see “Deploying plug-in libraries” on page 40).

globalConfig is an optional map providing default configuration options for this plug-in,
which are used by all chains/chain definitions using this plug-in that do not provide their own
value for them. The globalConfig configuration can be overridden by configuration per chain.

Chains under startChains are created at startup. The value of startChains is a map where
each key is a string that names a chain. Each value should be a list, naming the plug-ins that

Connecting Apama Applications to External Components 10.11.3 27

2 Using Connectivity Plug-ins

make up the chain. Each chain must contain one host plug-in, which is one of the built-in
supported host plug-ins, optionally followed by a number of codecs, and end with a plug-in
that is the transport. Configuration can optionally be specified for each plug-in, by following
the plug-in name with a colon and space, and providing the configuration below it. Note that
in YAML terms, the chain entry is a map rather than a string.

The dynamicChainsmap is used to provide chain definitions that are used by chain manager
plug-ins or EPL code that dynamically create chain instances after the correlator has started.
Each key in the map is a chain definition identifier, which is the string that will be used by the
chainmanager or fromEPL to identifywhat kind of chain it wants to create. Each value should
be a list, naming the plug-ins that make up the chain, similar to what you would specify in
startChains. Each chain must contain one host plug-in, which is one of the built-in supported
host plug-ins, optionally followed by a number of codecs, and end with a plug-in that is the
transport. Configuration can optionally be specified for each plug-in, by following the plug-in
name with a colon and space, and providing the configuration below it as a map value. One
difference between dynamicChains and startChains is that the plug-in configurations used in
dynamicChains can specify @{varname} variable placeholders which get replaced when a chain
instance is created from the chain definition, with values provided dynamically by the chain
manager plug-in or the EPL createDynamicChain call. If you are using a chainmanager plug-in,
see the plug-in's documentation for information about any @{varname} substitutions that it
supports.Note that this is unrelated to the ${varname} replacements that are performed statically
when YAML files are loaded at startup.

The value of dynamicChainManagers is amapwhere each key is amanager name, that is, a string
naming an instance of a dynamic chain manager plug-in class. Each value is a map providing
the configuration for the chain manager instance (such as details for connecting to a specific
external system) and the name of the transport plug-in it is associated with. The manager
should have the following keys:

transport: Specifies the transport plug-in associated with this dynamic chain manager.
Thismustmatch the key used in connectivityPlugins to load this chainmanager, and also
the name used in the dynamicChains definition to identify the transport plug-in at the end
of each chain. This is the name used for the plug-in in the configuration file, not the name
of the class that implements the plug-in.

managerConfig: Specifies the configuration map that will be passed to the chain manager
constructor when it is created at startup. The available configuration options are defined
by the plug-in author, therefore, see the plug-in's documentation for details. If the
managerConfig is invalid and the chain manager throws an exception, the correlator logs
an errormessage and fails to start. The managerConfigusually includes details for connecting
to a specific external server or system. Some chainmanagersmay also provide some options
that are set in the transport plug-in's configuration sectionunder dynamicChains, for example,
options specific to the protocol or message format described by that chain definition.

Note that there can be more than one manager instance configured for a given transport, for
example, if you need to connect to several different servers of the same type. Each manager
can make use of more than one chain definition, for example, if different message formats
(such as XML and JSON) are being used with the same server or chain manager. In simple
configurations where a transport only ever had a single manager instance and a single chain
definition, it is common to use the same string for the transport name, dynamic chain definition
identifier and manager name. However, there is no requirement for them to be the same.

28 Connecting Apama Applications to External Components 10.11.3

2 Using Connectivity Plug-ins

You can use .propertiesfiles to specify values for ${varname} substitution variables in configuration
files. See "Using properties files" in Deploying and Managing Apama Applications for further
information.

There are a few values which can be written into the configuration file which will be substituted
at runtime. This is to aid portability of configuration files between different deployments.
Specifically the following variables may be used:

DescriptionVariable

The absolute normalized path of the directory containing the
properties file or YAML file currently being processed.

${PARENT_DIR}

The path to the Apama installation.${APAMA_HOME}

The path to the Apama work directory.${APAMA_WORK}

The literal $ sign.${$}

Example:
connectivityPlugins:
myTransport:

directory: ${APAMA_WORK}/build
classpath:

- myTransport.jar
class: org.my.Transport

startChains:
service:

- apama.eventMap
- myTransport:

apamaInstall: ${APAMA_HOME}

The following example shows a more complex configuration for a transport plug-in that uses two
dynamic chain manager instances and also two different chain definitions:
connectivityPlugins:
a transport plug-in that uses a chain manager to instantiate
its chains and transport instances dynamically
myTransport:

directory: ${APAMA_WORK}/build
classpath:

- myTransport.jar
class: org.my.MyTransportChainManager

... codecs defined here too

dynamicChainManagers:
example of multiple chain managers for the same transport;
an instance is created during correlator startup for each
manager listed here
myTransportManager1:

must match transport plug-in name specified under connectivityPlugins
transport: myTransport

managerConfig:
myManagerConfigOption: ${myTransport.foo}

Connecting Apama Applications to External Components 10.11.3 29

2 Using Connectivity Plug-ins

myTransportManager2:
must match transport plug-in name specified under connectivityPlugins
transport: myTransport

managerConfig:
some managers specify which chain definition
to use in their configuration (others decide it at runtime)
myStaticallyConfiguredChainId: myJSONChainDefinition

dynamicChains:
myJSONChainDefinition:

- apama.eventMap
- jsonCodec
must match transport plug-in name specified under connectivityPlugins
- myTransport:

myTransportChainDefOption1: @{bar}
myTransportChainDefOption2: ${myTransport.baz}

myXMLChainDefinition:
- apama.eventMap
- myXMLCodec
- myTransport

To see a fullyworking example of using a dynamic chainmanager plug-in, try adding theUniversal
Messaging connectivity plug-in to your project (see "Adding theUniversalMessaging connectivity
plug-in to a project" in Using Apama with Software AG Designer).

In a configuration file, you can also specify the following:

Additional YAML configuration files that are to be processed. For more details, see "Including
YAML configuration files inside another YAML configuration file" in Deploying and Managing
Apama Applications.

JVM options which the correlator is to pass to the embedded JVM. For more details, see
"Specifying JVM options" in Deploying and Managing Apama Applications.

Host plug-ins and configuration
The first element in the configuration of a chain must be a host plug-in. This is a special type of
plug-in that controls how the correlator interactswith the chain. The type of plug-inwill determine
in which form events are passed to and accepted from the chain. The host plug-in must use a
compatible type with the first codec (or, if no codecs specified, the transport), otherwise errors
will be reported and events will not be delivered.

Overview of host plug-ins

The following host plug-ins are supported:

apama.eventMap

The eventMap plug-in translates EPL events to and from nested maps, which allows chains to
convert arbitrary structured data into forms that can be automatically translated into EPL
events without having to know the exact definition of the EPL event, provided the field names

30 Connecting Apama Applications to External Components 10.11.3

2 Using Connectivity Plug-ins

of the event definition match the keys in the map. See “Translating EPL events using the
apama.eventMap host plug-in” on page 32 for further information.

apama.eventString

The eventString plug-in transfers events in Apama string event format, as used by the
engine_send and engine_receive tools and the Apama client library.

Common configuration properties

All Apama host plug-ins take the following configuration properties:

DescriptionConfiguration Property

Optional. Defines the channel or channels to which the chain
subscribes in order to receive events from the correlator.

subscribeChannels

subscribeChannels is only recommended for chains defined as
startChains. Dynamic chains will have their channel
subscription specified either fromEPL or by the chainmanager
which will override any setting in the configuration file.

To send an event to a chain from EPL, use the EPL send
statement with the name of a channel to which the chain has
subscribed.

Type of configuration: string or list of strings.

Default: the chain name.

Optional. Defines the default channel to deliver events from
the transport to the correlator from the chain.

defaultChannel

Some chain managers provide a value for defaultChannel. It
is not permitted to specify defaultChannel for chains used by
such chain managers. It is recommended only for chains
defined as startChains or which you intend to create from
EPL.

Chains can also specify a channel name in themetadata of each
message. A channel provided in metadata takes precedence
over this configuration value.

Type of configuration: string.

Default: the default channel is an empty string (""), thus
delivering the event to all public contexts.

Optional. If set to true, any events which will be received by
this chain will not also be sent to contexts subscribed to the

suppressLoopback

same channel. It is assumed that this receiver may send the
events back into the correlator to be received by subscribed

Connecting Apama Applications to External Components 10.11.3 31

2 Using Connectivity Plug-ins

DescriptionConfiguration Property

contexts. This is typically usedwhen this chain is connected to
a message bus. Any other external receivers are unaffected.

Type of configuration: boolean.

Default: false.

Optional. A textual description which will appear in the
Management interface (see also "Using the Management
interface" in Developing Apama Applications).

description

Optional. A textual address for the remote component (if any)
to which this chain connects. This address will also appear in
the Management interface.

remoteAddress

Translating EPL events using the apama.eventMap
host plug-in
The eventMap plug-in translates events to or frommap objects, reflecting the structure of the event.
Each map entry has a key which is the same as an EPL event field. The values of the map can be
simple values (strings, numbers) or further maps or lists which correspond to dictionaries, nested
events or sequences.

If the message's payload does not contain all EPL fields, then by default the message is dropped
and a warning is logged. The allowMissing configuration property can be set to true, in which
case missing fields or fields with empty values are set to their default values.

If themessage's payload has fields that do not have corresponding EPLfields (orwhich are perhaps
optional), then the map entries are ignored by default. An event definition can specify a
com.softwareag.connectivity.ExtraFieldsDict annotation that names a dictionary field; extra
values are placed in the dictionary (see “Map contents used by the apama.eventMap host plug-
in” on page 54 for more information). If needed, this can be disabled by setting the extraFields
configuration property to false. The dictionary must be one of the following types:

dictionary<string,string> - Keys and values are coerced into strings. Lists generate the string
form of sequence<string>. Maps generate the string form of dictionary<string,string>.

dictionary<any,any> - Values are mapped to the corresponding EPL type, or sequence<any>
for lists and dictionary<any,any> for maps without names.

dictionary<string,any> - Keys are coerced into strings.

When events are sent from a chain to the correlator, the correlator needs to knowwhat event type
they are. This can be set by a chain plug-in (in the metadata of a message) or by setting the
defaultEventType configuration property. Themetadatawill take precedence to specify amessage's
type. Some chains will set the event type on every message, so the default event type does not
need to be set in the configuration. Other chains may not be aware of event types, so the event
type must be set.

32 Connecting Apama Applications to External Components 10.11.3

2 Using Connectivity Plug-ins

DescriptionConfiguration Property

Optional. The name of the EPL type to which events that are
going into the correlator are converted if no event type is
specified on a message.

defaultEventType

Type of configuration: string.

Default: none - requires that the chain send messages with the
event type set.

Optional. Defines whether missing fields or fields with empty
values (null values in Java) are permitted on inbound events.

allowMissing

If they are permitted, they are set to the EPL default for that
type. Similarly, empty values in nested events, elements in
sequences and key/value pairs in dictionaries are also set to
their default values.

There is an exception: an empty value that maps to an
optional<type> or any in EPL is permitted even if allowMissing
is false. See also the descriptions of the optional and any types
in the API Reference for EPL (ApamaDoc).

Type of configuration: boolean.

Default: false - this results in a WARN, and the events are
dropped if there are any missing or empty fields.

Optional. Defineswhether to placemap keys that do not name
fields in an extraFields dictionary member that is identified
with the @ExtraFieldsDict annotation (see above).

extraFields

Type of configuration: boolean.

Default: true.

Using reliable transports
Reliable messaging gives you the tools to write event-processing applications that are resilient
against message loss (for example, due to crashes or network outages).

To make use of reliable messaging in your connectivity plug-ins, you must:

Configure the transports for reliable messaging. The nature of this configuration is
transport-specific. Reliable messaging is only supported in chains that use the apama.eventMap
host plug-in. See also “Translating EPL events using the apama.eventMap host plug-in” on
page 32.

Write EPL to send and receive events via these transports and to handle acknowledgments.
For detailed information, see the event descriptions for Chain, AckRequired and FlushAck in

Connecting Apama Applications to External Components 10.11.3 33

2 Using Connectivity Plug-ins

the com.softwareag.connectivity and com.softwareag.connectivity.controlpackages in the
API Reference for EPL (ApamaDoc).

Note:
Not all transports support reliable messaging.

Reliable-messaging-aware transports only support at-least-once delivery, which admits the
possibility of duplicate messages, especially after recovery from downtime. Your applications
should be written to handle this.

In this version, reliable messaging with connectivity plug-ins is controlled exclusively from
EPL. At this time, reliable messaging cannot be automatically tied-in to correlator persistence.

If a license file cannot be found, reliable messaging with connectivity plug-ins is disabled. See
"Running Apama without a license file" in Introduction to Apama.

supports reliable messagingThis transport connectivity plug-in

NoUniversal Messaging

NoMQTT

YesDigital Event Services

NoHTTP server

NoHTTP client

NoKafka

NoCumulocity IoT

Message identifiers

Messages going from the transport to the host contain unique message identifiers. Each identifier
is stored as sag.messageId in the metadata. See “Metadata values” on page 58. You only need
access to the message identifiers if you want to acknowledge individual events.

Where a message maps to an event type that has the MessageId annotation, the message identifier
in the metadata is copied into a field on that event. You should not name a field that you expect
to have a real value. See "Adding predefined annotations" in Developing Apama Applications.

The following EPL example shows how to use the MessageId annotation:
using com.softwareag.connectivity.MessageId;

@MessageId("messageIdentifier")
event MyEvent {

string s;
integer i;
string messageIdentifier; // Contains the sag.messageId from the

// message that mapped to this event
}

34 Connecting Apama Applications to External Components 10.11.3

2 Using Connectivity Plug-ins

Chains

In general, when receiving or sending reliably, you need to know which connectivity chain is
receiving (from transport to host) or sending (from host to transport) the events. To identify that
connectivity chain, you use the EPL Chain event, which provides a wrapper with helpful actions
pertaining to reliability. There are two actions on the ConnectivityPlugins event that can be used
to get the Chain event for the chain you want:

ConnectivityPlugins.getChainByChannel

This action looks up a chain instance by a channel it is subscribed to or sending to.

ConnectivityPlugins.getChainById

This action looks up a chain instance by its identifier.

See the API Reference for EPL (ApamaDoc) for more information on these actions.

Reliable receiving

A transport can be configured for reliable receiving. This means the events are going from the
outside world into the correlator, and you make sure that they are not lost in the case of a failure.

The EPL that receives the events is obliged to acknowledgewhen the events have been fully processed
by the application. That is because the remote system towhich a reliable transport connects typically
keeps track of what messages have been acknowledged and what messages have not been
acknowledged. In the event of a failure, anymessages that have not been acknowledged are resent
to you after reconnection/restart.

Keep in mind that “fully processed” is different from just receiving an event. It means that you
have preserved the effect of that event, and done so safely enough that you will no longer need
the event to be resent in the event of a failure. As an example, that might mean committing the
contents of the event to a database, writing it to a file, or having sent an output event and received
an acknowledgment for it.

There are often performance implications for an application that is late with acknowledgments.
You should therefore acknowledge all events as soon as possible after receiving. There is no
guarantee, however, that an acknowledgment will be processed immediately. For example, if you
acknowledge some events in EPL and then the systemgoes down quite soon afterwards, the events
may not have been fully acknowledged to the remote system and will therefore get redelivered.

Once the events have been fully processed by the EPL application, they can be acknowledged in
either of the following ways:

Listen for AckRequired events from the com.softwareag.connectivity.control package, and
call the ackUpTo action on them. Doing it this way means you are acknowledging potentially
large batches of events at a time.

Use the ackUpTo action on the Chain event type to acknowledge all previously received events,
up to and including a specific event of your choice. In this case, you identify the specific event
with itsmessage identifier. If the event definition has the MessageId annotation, you can obtain
the message identifier from the named field.

Connecting Apama Applications to External Components 10.11.3 35

2 Using Connectivity Plug-ins

The detailed technical reasons for choosing between the above mechanisms are given in the
descriptions of the Chain and AckRequired events in the API Reference for EPL (ApamaDoc).

The following EPL example shows how an application can write reliably-received events to a file.
It uses a fictional plug-in named filePlugin for this purpose.
using com.softwareag.connectivity.ConnectivityPlugins;
using com.softwareag.connectivity.Direction;
using com.softwareag.connectivity.Chain;
using com.softwareag.connectivity.control.AckRequired;
...

monitor.subscribe("incomingEvents"); // The chain is sending us events
// on this channel

Chain chn := ConnectivityPlugins.getChainByChannel("incomingEvents",
Direction.TOWARDS_HOST); // Get the chain itself

on all MyEvent() as e { // The events the application is interested in
evtSequence.append(e);

}

on all AckRequired(chainId=chn.getId()) as ackRequired {
// Periodically acknowledge all previously received events,
// but only after safely writing their contents to a file
filePlugin.writeAndSync(evtSequence.toString());
evtSequence.clear();
ackRequired.ackUpTo();

}

In all reliable receiving, you have to consider the possibility that some events that have already
been acknowledgedmight be resent to your application, especiallywhen recovering after a failure.
Your application should be written to either eliminate duplicates or tolerate them.

Any towards-host messages that get dropped by the chain due to errors (for example, when a
codec cannot translate from one form to another due to an invalid format) are treated as if they
have already been acknowledged.

Reliable sending

Reliable sending is symmetrical with reliable receiving for most purposes. With reliable sending,
your EPL application can ask to be notified when a remote system has safely processed your
events. As before, you have to knowwhat chain is being used for reliable sending of these events,
and so you have to get the relevant Chain instance. After sending some events, you may call the
flush() action of the Chain.

Once all events sent to the chain before this call have been safely stored on (or have been processed
by) the remote system, your application will see an acknowledgment in the form of a FlushAck
event. Your applicationmight then respond to this, for example, by acknowledging reliably-received
events that caused these events to be sent, or by recording the fact that the event has been sent in
away thatmeans that the applicationwill not send it again. In the event of a restart, your application
should be written such that it is able to resend any events that were sent but not acknowledged
in its previous incarnation.

The following is an example of EPL application using the flush() action:
using com.softwareag.connectivity.ConnectivityPlugins;

36 Connecting Apama Applications to External Components 10.11.3

2 Using Connectivity Plug-ins

using com.softwareag.connectivity.Direction;
using com.softwareag.connectivity.Chain;
using com.softwareag.connectivity.control.FlushAck;
...

// Get the chain for the channel we are sending events to
Chain chn := ConnectivityPlugins.getChainByChannel("chanWeSendTo",

Direction.TOWARDS_TRANSPORT);

on all wait(0.1) {
globalInteger := globalInteger + 1;
MyEvent e := MyEvent(globalInteger);
send e to "chanWeSendTo";

// All previously sent events have now been safely processed by
// the remote system
on FlushAck(requestId=chn.flush()) {

log "Fully sent " + e.toString() at INFO;
}

}

Your application should be written with the idea that it might send duplicate events in the case
of a problem (for example, if your application sends out some events which are then processed
by some remote system, but there is a crash before your application can see the FlushAck event).

Creating dynamic chains from EPL
You can define chains under the dynamicChains section of the configuration file which are not tied
to a specific dynamicChainManager. These chains are not created on startup. Instead, multiple
instances of these chains can be created on demand from EPL using the ConnectivityPlugins EPL
API. There is a static method on the com.softwareag.connectivity.ConnectivityPlugins event
type:

createDynamicChain(string chainInstanceId, sequence<string> channels, string
chainDefnName, dictionary<string, string> substitutions, string defaultChannelTowardsHost)
returns Chain;

Calling this method creates and starts a new instance of a chain defined under dynamicChains and
returns a com.softwareag.connectivity.Chain object which can later be used to destroy the chain
via the destroy()method.

The arguments to createDynamicChain are:

DescriptionArgument

The identifier to use for the new chain instance. This
identifier is used for logging, and it must be unique.

chainInstanceId

A sequence of channels to which this chain is to be
subscribed in the correlator. Events sent to these channels
from EPL are delivered to this chain.

channels

Connecting Apama Applications to External Components 10.11.3 37

2 Using Connectivity Plug-ins

DescriptionArgument

The name of a chain defined under dynamicChains in the
configuration file. This must not be for a transport which
has a dynamicChainManager.

chainDefnName

A map of key-value pairs to be substituted into the chain
definition using @{key} syntax.

substitutions

The default channel to use for sending a message towards
the host if no channel is specified on the message. Specify
an empty string if you do notwant to use a default channel.

defaultChannelTowardsHost

Note:
You must not specify a non-empty value for
defaultChannelTowardsHost if the configuration property
defaultChannel is also specified for the host plug-in (see
also “Host plug-ins and configuration” on page 30). An
error will occur in this case.

At the point when createDynamicChain returns, the chain is created and able to receive events. The
chain exists until either the correlator is shut down or the .destroy()method is called on the Chain
object returned by createDynamicChain.

Sending and receiving events with connectivity plug-
ins
When the correlator starts up, any connectivity chains listed in the configuration file are loaded
and started. At this point, events may be sent from EPL to the chains, through all of the codecs
towards the transport.

onApplicationInitialized

While the transport is able to send events towards the host (the correlator), the correlator does not
process those events immediately. This prevents problems with events that are sent from the
transport to the correlator before the correlator has had event definitions injected, or the EPL to
handle those events has been injected or is ready to process the events. Instead, these events are
queued in the correlator.

An EPL application that sends or receives events to a transport should call the
onApplicationInitializedmethod on the com.softwareag.connectivity.ConnectivityPlugins
EPL object. This notifies the correlator that the application is ready to process events. Any events
that the transport sends towards the host (correlator) before this is called are then delivered to the
correlator. Events from a transport are maintained in the correct order.

Calling onApplicationInitialized notifies all codecs and transports that the host is ready by
calling the hostReadymethod. The transport may choose not to receive events (for example, from
a JMS topic) until the application is ready if doing so may have adverse effects.

38 Connecting Apama Applications to External Components 10.11.3

2 Using Connectivity Plug-ins

Initialization:

1. Apama recommends that after all an application's EPL has been injected, the application should
send an application-defined "start" event using a .evt file.

Software AGDesigner, engine_deploy and other tools all ensure that .evt files are sent in after
all EPL has been injected.

2. The monitor that handles the application-defined start event (from step 1) should use this
event object to notify the correlator that the application is initialized and ready to receive
messages, for example:
on com.mycompany.myapp.Start() {

com.softwareag.connectivity.ConnectivityPlugins.onApplicationInitialized();
// Any other post-injection startup logic goes here too.

}

Note:
For simple applications, you can add the EPL bundle Automatic onApplicationInitialized to
your project (see also "Adding bundles to projects" in Using Apama with Software AG Designer).
This bundlewill ensure that onApplicationInitialized is called as soon as the entire application
has been injected into the correlator. However, in cases where you need to wait for a
MemoryStore, database or another resource to be prepared before your application is able to
begin to process incoming messages, you should not use the bundle. In these cases, you should
write your own start event and application logic.

To aid diagnosing problemswhen part of the system is not ready in a timelymanner, the correlator
logs this on every Status: log line (by default, every 5 seconds). For example:

Application has not called onApplicationInitialized yet - 500 events from connectivity
transports will not be processed yet

If EPL has not yet called onApplicationInitialized or if a plug-in in myChain has not returned
from hostReady yet, the following is logged:

Chain myChain is handling hostReady call

Calling ConnectivityPlugins.onApplicationInitialized also notifies the correlator-integrated
messaging for JMS, if enabled, that it is ready to receive events. It will then implicitly perform the
JMS.onApplicationInitialized() call (see “Using EPL to send and receive JMS messages” on
page 245). You should only call ConnectivityPlugins.onApplicationInitialized() once the
application is ready to receive all incoming events, either from connectivity chains or JMS.

Diagnostic codec

You can use the Diagnostic codec to view the messages being sent at any point in the connectivity
chain. This is very useful for diagnosing problems, and for configuring message transformations
using codecs such as theMapper andClassifier codecs. Formore information, see “TheDiagnostic
codec connectivity plug-in” on page 228 for further information.

Connecting Apama Applications to External Components 10.11.3 39

2 Using Connectivity Plug-ins

Simple sample

The samples/connectivity_plugin/application/genericsendreceive directory of your Apama
installation includes a simple sample which provides an easy way to get started with sending and
receiving messages to or from any connectivity plug-in.

The sample contains some simple event definitions called mypackage.MySampleInput and
mypackage.MySampleOutput that can be used for input and outputmessages. These event definitions
can be customized with additional fields as you wish.

In addition, the sample contains a monitor that subscribes to a specific transport channel and logs
all events received from it, and also sends test events to a specific transport channel.

To use the sample, simply copy it into your Apama work directory or import it into Software AG
Designer as an existing project. Then customize the channel (or channels) it is sending to/from to
match the channel naming scheme specified in the documentation or configuration of the transport
you are using (for example, um:MyChannelName for UniversalMessaging). Finally, add and configure
the connectivity plug-in you wish to use (see also). Depending on the transport and chain
configuration you are using, youmay also need to configureMapper and/or Classifier codec rules
in the YAML file (see also “Codec Connectivity Plug-ins” on page 209) to use the
mypackage.MySampleInput and mypackage.MySampleOutput event definitions used by the sample.

See the README.txt file in the genericsendreceive sample directory for more details.

Deploying plug-in libraries
Every Java plug-in is loaded in a separate class loader. Static variables cannot be shared between
different plug-ins, unless a class is placed on the system's classpath. This allows different plug-ins
to use different versions of Java libraries without interference.

For C++ plug-ins, note that while a library can be loaded from any directory by specifying a
directory key in the connectivityPlugins section of the configuration file (see “Configuration file
for connectivity plug-ins” on page 26), any libraries that the plug-in depends on will only be
loaded from the system library path (using the LD_LIBRARY_PATH environment variable and standard
locations on UNIX, or using the PATH on Windows). The Apama Command Prompt (see "Setting
up the environment using the Apama Command Prompt" in Deploying and Managing Apama
Applications) adds $APAMA_WORK/lib to the system library path, which is the recommended place
to put any libraries that plug-ins require. Any libraries that the plug-in loads will be shared across
the entire process, therefore different plug-ins will need to use the same version of third-party
libraries where applicable. OnWindows, ensure that the class and package names of plug-ins are
different across plug-ins.

In general, C++ plug-ins will give better performance than Java libraries, as there is a cost in
converting objects between Java and the C++ types. In particular, avoid mixing many interleaved
Java and C++ plug-ins in the same chain. If possible, put the C++ plug-ins on the host side of the
chain, as the correlator host plug-ins are C++ and adjacent plug-ins of the same type are cheaper
than conversions. However, the language bindings of any libraries required by a plug-in and
familiarity with the programming environment should be the primary factors when deciding in
which language to write a new plug-in.

40 Connecting Apama Applications to External Components 10.11.3

2 Using Connectivity Plug-ins

3 Developing Connectivity Plug-ins

■ Chain components and messages ... 42

■ Requirements of a plug-in class ... 43

■ Requirements of a transport chain manager plug-in class ... 47

■ Building plug-ins ... 49

■ C++ data types ... 51

■ Map contents used by the apama.eventMap host plug-in .. 54

■ Metadata values ... 58

■ Lifetime of connectivity plug-ins ... 60

■ Creating dynamic chains from a chain manager plug-in .. 62

■ User-defined status reporting from connectivity plug-ins ... 63

■ Logging and configuration .. 65

■ Threading ... 66

■ Developing reliable transports .. 67

■ General notes for developing transports .. 70

Connecting Apama Applications to External Components 10.11.3 41

Chain components and messages
Connectivity chains consist of zero or more codecs and one transport.

Codecs perform some transformation of events, processing events going to and from the correlator,
and passing them on to the next component in the chain. Examples of codecs include:

Translating events from structured form into a serialized form such as JSON or XML.

Changing the name of a field to translate between different naming conventions.

Removing unnecessary fields.

Filtering, merging or splitting events.

Transports are the end of a chain. They may deliver the events to an external system that is not
part of the chain and may be out of process, or may perform some operation and send the result
to back to the correlator. Examples of transports include:

Sending HTTP requests and receiving responses.

Receiving events from a message bus.

Performing operations on a file system.

Codecs and transports may be written in Java or C++, and chains can contain a mixture of C++ and
Java plug-ins.Messageswill be automatically converted betweenC++ and Java forms. The language
bindings of any libraries required by a plug-in and familiaritywith the programming environment
should be the primary factors when deciding on the language in which to write a new plug-in.
Note that conversions betweenC++ and Java forms are copies and there are overheads in performing
these conversions. As the Apama host plug-ins are implemented in C++ (as is the core of the
correlator), a chain consisting of only C++ plug-ins will perform better. In particular, avoidmixing
many interleaved Java and C++ plug-ins in the same chain. If possible, put the C++ plug-ins on
the host side of the chain. Where adjacent plug-ins in a chain are of the same type (C++/Java),
messages are passed by reference/pointer (they are not copied).

Plug-ins communicate with each other and the correlator (also referred to as the host) by sending
batches of messages. Messages are converted to/from the events within a correlator. When a chain
sends amessage to the host, the host plug-in converts it to an event and sends it into the correlator.
When the correlator emits an event to a channel onwhich a chain is listening, then the host plug-in
converts it from an event to a message, and delivers it to the chain. The plug-ins in a chain may
do conversions, for example, a codec may convert a map to a single string (for example, a JSON
codec), but that can be passed within a message. When it gets to a transport, it may be taken from
themessage and delivered in some other form (for example, anHTTP request). Amessage consists
of a payload (which can be of different types according to the needs of the plug-in) and ametadata
map of strings. For more information, see the Message class in the API Reference for Java (Javadoc)
or API Reference for C++ (Doxygen).

Metadata holds data about the event, such as the channel on which the event was delivered or the
type of the event. Plug-ins can use metadata to pass extra information about events that are not
part of the event (for example, latency through a chain could be measured by adding timestamps
to metadata and comparing that with the time needed for processing an event).

42 Connecting Apama Applications to External Components 10.11.3

3 Developing Connectivity Plug-ins

The message payload can be null. This means that the message is not a real event. This can be
useful for passing non-event information between plug-ins; many plug-ins will ignore this. For
example, a request to terminate a connection could be sent from one codec to signal the transport
to disconnect, and intermediate codecs that perform transformations such as JSONencodingwould
ignore the event.

Messages are passed in batches so that transports (and codecs) can take advantage of amortizing
costs if operating at high throughput. Most plug-ins can be written by subclassing
AbstractSimpleCodec or AbstractSimpleTransport classes (see “Requirements of a plug-in class” on
page 43) and only need to process a single Message at a time. The delineation of messages into
batches does not carry any significance beyond the events are all available at the same time. This
is only an opportunity for optimizations, not for passing extra semantic information. Codecs are
not required to maintain the same batches and can re-batch messages if desired.

Messages are not copied between plug-ins and do not perform any locking or synchronization. If
a codec wants to keep hold of a pristine copy of a message, it should store a copy of the message.

Every chain will need to work with one of the supplied host plug-ins. Most chains will use the
apama.eventMap plug-in which allows events to be sent without needing to know the exact event
definition. See also “Map contents used by the apama.eventMap host plug-in” on page 54.

Requirements of a plug-in class
Java and C++ plug-ins are identified in the connectivityPlugins section of the configuration file
for the connectivity plug-ins. See “Configuration file for connectivity plug-ins” on page 26 for
detailed information.

The named classmust be a descendent of either AbstractCodec or AbstractTransport, unless it
is a transport with a dynamic chain manager in which case the class must subclass
AbstractChainManager (see “Requirements of a transport chain manager plug-in class” on page 47
for more information about developing chain managers).

In most cases, the easiest way to write codec and transport classes is by subclassing
AbstractSimpleCodec or AbstractSimpleTransport. However, in some cases, a plug-in can achieve
better performance by directly subclassing the base class AbstractCodec or AbstractTransport;
these classes support handling a batch of multiple messages in a single call.

The classes are summarized in the following table. They are all in the com.softwareag.connectivity
package (Java) or in the com::softwareag::connectivity namespace (C++). See the API Reference
for Java (Javadoc) and API Reference for C++ (Doxygen) for more information.

Minimummethods subclasses need to
implement

Subclasses deal
in

Base class

sendBatchTowardsTransport,
sendBatchTowardsHost

Batches of
messages

AbstractCodec

sendBatchTowardsTransportBatches of
messages

AbstractTransport

Connecting Apama Applications to External Components 10.11.3 43

3 Developing Connectivity Plug-ins

Minimummethods subclasses need to
implement

Subclasses deal
in

Base class

transformMessageTowardsHost,
transformMessageTowardsTransport

Individual
messages

AbstractSimpleCodec

Note that everymessage results in atmost one
message out.

deliverMessageTowardsTransportIndividual
messages

AbstractSimpleTransport

All of the above classes also provide members or default implementations of:

Member chainId

Member config

Member logger for logging (see below)

Member hostSide - the next component in the chain towards the host

Member transportSide - the next component in the chain towards the transport (for codecs
only)

start

hostReady

shutdown

The start, hostReady and shutdownmethods can be overridden if required. See also “Lifetime of
connectivity plug-ins” on page 60.

Plug-in class constructor

Subclasses should provide a constructor like the following, for Java:
public <ClassName>(org.slf4j.Logger logger,

TransportConstructorParameters params) throws Exception,
IllegalArgumentException {

super(logger, params);
...

}

or for C++:
public:
<ClassName>(const TransportConstructorParameters ¶ms)

: AbstractSimpleTransport(params)
{

...
}

44 Connecting Apama Applications to External Components 10.11.3

3 Developing Connectivity Plug-ins

The constructors for codecs follow the same pattern as for transports. The
TransportConstructorParameters or CodecConstructorParameters object provides access to the
plug-in's configuration and other useful information and capabilities, some ofwhich are alsomade
available as member fields for convenience.

Note that transportswith an associated dynamic chainmanager are created by the chainmanager's
createTransportmethod (for Java) or must have a public constructor with signature (const
ManagedTransportConstructorParameters &, ...)where ... are any extra parameters passed in
the createChain call (for C++).

In both Java and C++, there is a logger available using the logger field (for Java, this is also passed
into the constructor). Note that all messages logged using the logger will include the chainId and
pluginName, so there is no need to explicitly add that information to each message. See the API
Reference for Java (Javadoc) and API Reference for C++ (Doxygen) for detailed information.

Using AbstractSimpleCodec and AbstractSimpleTransport

The AbstractSimpleCodec and AbstractSimpleTransport classes handle batches by iterating through
each message within a batch and calling one of the methods listed above for each message. For
Java codecs, the result of the transformmethod replaces thatmessage in the batch. For C++ codecs,
the transformmethod passes a reference to a message which can be mutated or the message
discarded if the method returns false. By default, messages with a null payload are ignored by
the AbstractSimpleCodec and AbstractSimpleTransport classes, but subclasses may override
methods to handle them (see theAPI Reference for Java (Javadoc) andAPI Reference for C++ (Doxygen)
for details).

Exceptions from processing one message are logged by default (this behavior can be overridden
by implementing handleException) and the next message is then processed.

To deliver events to the correlator, transports call the sendBatchTowardsHostmethod on the hostSide
member of AbstractSimpleTransport, passing a batch of messages as a List<Message> (they can
use Collections.singletonList() if needed).

Using AbstractCodec and AbstractTransport

Chains are bidirectional, passing events to and from the correlator. The order of plug-ins within
a chain is defined by the configuration file: first the host plug-in, then codecs, and finally a transport.
Plug-ins are connected such that the hostSide and transportSidemembers of AbstractCodecpoint
to the previous and next plug-in in the chain; and for AbstractTransport, hostSide points to the
last codec (or the host plug-in if there are no codecs).

Events from the correlator are sent to the first codec (or transport if there are no codecs). Each
codec should pass the message through to the next component, invoking the
sendBatchTowardsTransportmethod on the transportSidemember.

Events to the correlator originate from the transport and are delivered by invoking the
sendBatchTowardsHostmethod on the hostSidememberwhich delivers the events to the last codec.
The last codec should invoke the sendBatchTowardsHostmethod on its hostSide object, thus
traversing plug-ins in the reverse order. For Java, transportsmust always provide hostSide a batch
of messages as a List<Message> (they can use Collections.singletonList() if needed). For C++
plug-ins, the batches are passed as a pair of start and end pointers to Message. The batch is defined

Connecting Apama Applications to External Components 10.11.3 45

3 Developing Connectivity Plug-ins

as starting from the message pointed to by start and up to just before the message pointed to by
end - similar to begin() and end() iterators on C++ containers. Thus, the messages in a batch can
be iterated with a loop such as:
for (Message *it = start; it != end; ++it) {

handleMessage(*it);
}

Plug-ins are provided with a HostSide and (for codecs only) TransportSide interface view of the
next component in the chain (as members of AbstractTransport or AbstractCodec).

Codecs are not required to maintain a one-to-one mapping of events going in and out. They may
choose to discard or merge multiple messages or split a message into separate messages.

Exporting the required symbols from C++ plug-ins

C++ plug-ins also require a macro which exports the symbols that the correlator needs to create
and manage the plug-in object. The macro has one of the following names:

SAG_DECLARE_CONNECTIVITY_TRANSPORT_CLASS(class-name)

This macro should not be used for transports with a chain manager.

SAG_DECLARE_CONNECTIVITY_CODEC_CLASS(class-name)

SAG_DECLARE_CONNECTIVITY_TRANSPORT_CHAIN_MANAGER_CLASS(class-name)

This macro is used for exporting a chain manager class.

The macro takes the base name of the class - the class's name excluding any package. Software
AG recommends declaring codecs and transports in a package to avoid name collisions, and using
the macro within the namespace declaration, or where a using statement applies. For example:
#include <sag_connectivity_plugins.hpp>
using namespace com::softwareag::connectivity;

namespace my_namespace {

class MyTransport: public AbstractSimpleTransport
{
public:
MyTransport(const TransportConstructorParameters ¶ms)

: AbstractSimpleTransport(params)
{

...
}
virtual void deliverMessageTowardsTransport(Message &m)
{

logger.info("deliverMessageTowardsTransport()");
}
...

};

SAG_DECLARE_CONNECTIVITY_TRANSPORT_CLASS(MyTransport)
} // end my_namespace

46 Connecting Apama Applications to External Components 10.11.3

3 Developing Connectivity Plug-ins

Note:
For a chainmanager, you should include the header file sag_connectivity_chain_managers.hpp
instead of sag_connectivity_plugins.hppwhich is used in the above example.

Requirements of a transport chain manager plug-in
class
A transport plug-in can control the lifetime of chains involving that transport, by providing a
dynamic chain manager. The chain manager can decide when to create or destroy chains, and is
typically controlled by either listening to channel subscriptions from the correlator host, or by
listening to external connections.

For example, any topic or queue on a message bus can be exposed dynamically without having
to provide a list of the topics/queues to connect to. On a channel-created notification, the chain
manager would check if there is a topic/queue to which it can connect, and create a chain instance
to connect to that topic/queue on demand.

Alternatively, the chain manager may listen to accept new connections, and each new connection
can create a new chain instance. For example, new incoming connections could each create a new
chain instance, with the chain manager holding a server socket, and on accepting connections
creating a suitable chain instance to handle messages on that connection. In both cases, the chain
manager will typically hold some connection object, which it then needs to pass to transport
instanceswhen they are created. Thus, the chainmanager and transport are usually tightly coupled,
and a chain manager can only create chains using its own transport class.

A transport that uses a dynamic chain manager to create its instances consists of a subclass of
AbstractTransport (or AbstractSimpleTransport), and a subclass of AbstractChainManagerwhich
is the class that must be specified in the configuration file's connectivityPlugins section. See
“Configuration file for connectivity plug-ins” on page 26 and “Requirements of a plug-in class” on
page 43.

The chain manager is responsible for:

Creating and destroying chains as needed, often in response to notifications about the channels
that the EPL application is using or to handle new connections initiated from another process.
Some managers will create a single chain for sending messages in both directions on a given
channel (towards host and towards transport), others may create separate chains for each
direction, ormay only support one direction. For detailed information about this, see “Creating
dynamic chains from a chain manager plug-in” on page 62. In summary, there are two main
aspects to chain creation:

Selectingwhich chain definition to usewhen creating a new chain instance, if there ismore
than one chain definition available for this transport. For more information, see “Creating
dynamic chains from a chain manager plug-in” on page 62.

Instantiating the transport plug-in during creation of the chain, by calling the transport's
constructor.

With Java, the chain manager can simply pass through the logger and params arguments
to a transport constructor with the same signature as the createTransportmethod, or can

Connecting Apama Applications to External Components 10.11.3 47

3 Developing Connectivity Plug-ins

pass additional information that the transport needs - such as a reference to the chain
manager or connection, or information about the host channel(s) the chain is sending
to/from.

With C++, the transport's constructor is invoked directly, with a signature of (const
ManagedTransportConstructorParameters &, ...)where ... are any extra parameters
passed in the createChain call.

Instantiating and managing the lifetime of any connection to an external server or other
resources that should be shared by all associated transports. Usually, it is undesirable for each
transport or chain to have its own separate connection to any external server that the transport
is using, as the number of chainsmay be large. Inmany protocols, connections are heavyweight
entities that you would not want to have lots of. The chain manager can create its connections
at any time, but it is recommended to create the initial connection in the chain manager's
start()method if it is desirable for the correlator to delay coming up until the connection is
established, and for the correlator to fail to start if an exception is thrown while making the
initial connection. If not, it should happen on a background thread created by the start()
method.

Optionally, reporting status information that applies to the chain manager rather than to
individual transports. For example, status about a connection shared across all transports could
be reported by the chainmanager, as could aggregated KPI statistics from all transport chains.

The transport class is responsible only for sending and/or receiving messages, often making use
of a connection owned by the chain manager. Transports can also report their own status values
if desired, though if it is likely there will be a large number of transports, individual status for
each may be less useful and more expensive to report than aggregated status for the whole chain
manager.

Every chain manager is required to implement the following:

A public constructor that will be called during correlator startup for each configured
dynamicChainManager, with the same signature as the AbstractChainManager constructor.

createTransport (Java only; for C++, the transport's constructor is invoked directly as described
above)

start

shutdown

The AbstractChainManager base class has a number ofmember fields that provide access to logging,
the configuration for all dynamic chain definitions associated with its transport, and a
ChainManagerHost interface which supports creating chains and registering channel listeners.

A typical chain manager would use its start()method to create any required connection(s) to
external servers, and to add a ChannelLifecycleListener providing notifications when channels
with a specific prefix are created or destroyed.

It is possible to listen for all channels regardless of prefix, but using a prefix to limit the subset of
channels monitored by each chain manager is recommended to improve performance. The
ChannelLifecycleListenerwill fire to indicate that a channel has been created when the channel
name is used for the first time, typically as a result of the Apama application calling

48 Connecting Apama Applications to External Components 10.11.3

3 Developing Connectivity Plug-ins

monitor.subscribe(channel) or send event to channel. When this happens, the manager must
first decidewhether it needs to have a chain for the specified channel, as somemanagersmay only
wish to take action if a channel with the specified name exists on the external system they are
connected to. Themanagermust also check if it already has a chain for this channel in the specified
direction, since in some situations the listener will notify about creation of the same channel more
than once (see flushChannelCache in "Shutting down andmanaging components" inDeploying and
Managing ApamaApplications). If themanager has established that a chain is needed for this channel
and none already exists, it should create one before returning from the listener callback. Or if a
chain already exists for this channel, but is no longer needed, it should destroy it. In other cases,
it should do nothing.

The first EPL monitor.subscribe(channel) or send event to channel call to use a channel with a
registered listener will block until the listener returns to ensure that no messages are missed if the
manager does decide to create a chain for that channel. If an error occurs in the chain manager's
implementation of the listener callback, it will be logged but no exception is thrown in the EPL
application. See “Creating dynamic chains from a chain manager plug-in” on page 62 for more
details about how to create chains from a dynamic chain manager.

When the onChannelDestroyedmethod of the ChannelLifecycleListener is called to indicate that
a channel has been destroyed (that is, implies that there are no remaining EPL monitors using the
channel for the specified direction), the chain manager should call destroy on the chain to shut
down and disconnect all associated transport and codec plug-ins. Chain managers should not
implement reference counting, as the destroy notification will not be fired until all uses of the
channel have finished.

Note that at present, channel destroy notifications are only sent for the TOWARDS_HOST direction
(monitor.subscribe()) since in the TOWARDS_TRANSPORT direction (send event to channel) there is
no unambiguous way of determining when a channel is no longer needed.

If using correlator persistence, the required channel lifecycle notifications for channels in use by
any persistent monitors will be replayed to chain managers during recovery, so there is no need
for chain managers to persist any state across restarts to support correct operation of persistence.

For detailed information about the classes and interfaces involved in creating a chain manager,
including more detailed information about how to use the listener API correctly and safely, see
the API Reference for Java (Javadoc) on the com.softwareag.connectivity.chainmanagers package,
or see theAPI Reference for C++ (Doxygen) on the com::softwareag::connectivity::chainmanagers
namespace.

For a complete example of a working Java chain manager and transport, see the Kafka sample in
the samples/connectivity_plugin/java/KafkaTransport directory of your Apama installation.

A skeleton sample for C++ is provided in the samples/connectivity_plugin/cpp/skeleton_
chainmanager directory of your Apama installation. You can use this sample as a starting point to
write your own C++ chain manager and transport.

Building plug-ins
See the samples/connectivity_plugin directory of your Apama installation for working samples
of connectivity plug-in source code, Ant build files, makefiles, or Microsoft Visual Studio projects

Connecting Apama Applications to External Components 10.11.3 49

3 Developing Connectivity Plug-ins

for building C++ plug-ins (note that the build instructions in the samples/connectivity_plugin
directory assume that you are using a recent version of Microsoft Visual Studio).

Building Java plug-ins

Java plug-ins require the connectivity-plugins-api.jar file in the lib directory of your Apama
installation to be on the compiler's classpath as it defines Message, AbstractCodec, AbstractTransport,
AbstractChainManager and associated classes. The classes are in the com.softwareag.connectivity.*
packages.

All code samples shown in this connectivity plug-ins documentation assume either that the
following lines of code are present in the source file, or that the classes are imported individually.
import com.softwareag.connectivity.*;
import java.util.*; // Map, HashMap, List, ArrayList

// are commonly used classes in these samples

You can develop Java-based connectivity plug-ins in Software AG Designer. To do so, you have
to add the Apama Java support to your Apama project. See "Creating Apama projects" in Using
Apama with Software AG Designer for more information. This will automatically take care of the
classpath for you.

Building C++ plug-ins

C++ plug-ins require the header files in the include directory of your Apama installation to be on
the compiler's include path. The plug-in should be linked as a shared library and it should link
against the apclient library in the lib directory of your Apama installation. The resultant library
will thus depend on the apclient library.

All code samples shown in this connectivity plug-ins documentation assume either that the
following lines of code are present in the source file, or that individual using statements are used
for each class.
#include <sag_connectivity_plugins.hpp>

using namespace com::softwareag::connectivity;

For chain manager classes, the following is also needed:
#include <sag_connectivity_chain_managers.hpp>
using namespace com::softwareag::connectivity::chainmanagers;

For information on the compilers had have been tested and are supported, refer to the Supported
Platforms document for the current Apama version. This document is available from http://
documentation.softwareag.com/apama/index.htm.

Connectivity plug-in headers are awrapper around aCABI. Unlike other plug-ins, theC++ plug-ins
are therefore not sensitive to which C++ compiler product, compiler version and compiler
configuration (for example, a debug or release build) is used. The C++ compiler used does need
to correctly support parts of the C++11 standard, and exact settings required for each compiler
will vary.

50 Connecting Apama Applications to External Components 10.11.3

3 Developing Connectivity Plug-ins

http://documentation.softwareag.com/apama/index.htm
http://documentation.softwareag.com/apama/index.htm

If you are building a shared library to be used by multiple plug-ins and using the plug-in-specific
data structures as part of your API between the library and the plug-ins, then you must ensure
that the library and all of the plug-ins are compiled using the same version of the Apama header
files. This means that if you upgrade Apama and want to recompile one of them, you must
recompile all of them. You can choose not to recompile anything and they will still work.

If you compilewith headers frommultiple service packs of Apama, then youmay see errors similar
to the following when you try to link them.

Linux :

undefined reference to `Foo::test(com::softwareag::connectivity10_5_3::data_t const&)'

Windows:

testlib2.obj : error LNK2019: unresolved external symbol "public: void __cdecl
Foo::test(class com::softwareag::connectivity10_5_3::data_t const &)"
(?test@Foo@@QEAAXAEBVdata_t@connectivity10_5_3@softwareag@com@@@Z) referenced in
function "public: void __cdecl Bar::test(class
com::softwareag::connectivity10_5_3::data_t const &)"
(?test@Bar@@QEAAXAEBVdata_t@connectivity10_5_3@softwareag@com@@@Z)

testlib2.dll : fatal error LNK1120: 1 unresolved externals

If you encounter a similar error, try recompiling all your components with the same version of
the headers.

If you are compiling a single plug-in, or multiple completely independent plug-ins, you can
recompile them in any combination at any time.

If you want to develop plug-ins in C++, you have to use your own C++ compiler/development
environment.

C++ data types
C++ plug-ins handle messages, which have a payload which can be any of the following:

string (null terminated UTF-8) (const char*)

integer (64 bit) (int64_t)

float (64 bit) (double)

decimal (64 bit) (decimal_t)

boolean (bool)

map of any of these types to any of these types (map_t)

list of any of these types (list_t)

byte buffer (buffer_t)

a custom object - a pointer to a user-defined class (custom_t)

Connecting Apama Applications to External Components 10.11.3 51

3 Developing Connectivity Plug-ins

an empty or “null” value

To facilitate this, the payload member of a message is of the
com::softwareag::connectivity::data_t class type. The data_t type is a “smart union” that holds
one of the above types, and knows which type it holds. It has a similar API to a boost variant. The
data_t class has constructors from each of the above types, and a no-argument constructor which
creates an empty value. Accessing the data contained in a data_t instance can be performed as
described below.

Use the get free template function. For example:
data_t data("some text");
const char *text = get<const char*>(data);
map_t map;
data_t mapdata(map);
map &mapref = get<map_t>(mapdata);

For compound types map_t, list_t, custom_t and buffer_t, this returns a reference to the
object.

You can attempt to convert integer, boolean, string or float values inside a data_t to each other,
regardless of the underlying type. The following is an example for turning a string into its
numerical representation:
data_t data("10");
int64_t i = convert_to<int64_t>(data);
double f = convert_to<double>(data);

Use a visitor and the apply_visitor free template function. A visitor is a class with operator()
methods for each of the types (and no arguments for empty data_t). If youwish to use a visitor
that only handles a few types and throws an error on all other types, then sub-class the provided
visitor or const_visitor template and override one or more of the following methods:

visitEmpty

visitInteger

visitDouble

visitBoolean

visitDecimal

visitBuffer

visitList

visitMap

visitCustom

The result of apply_visitor is of type visitor::result_type (typically a typedef), or the second
template argument of visitor/const_visitor. For example:
struct print_data: public const_visitor<print_config, void>
{

52 Connecting Apama Applications to External Components 10.11.3

3 Developing Connectivity Plug-ins

void visitString(const char *s) const { std::cout << s; }
void visitList(const list_t &l) const
{

std::cout << "[";
for (list_t::const_iterator it = l.begin(); it != l.end(); ++it) {

apply_visitor(print_data(), *it);
if (it+1 != l.end()) std::cout << ", ";

}
std::cout << "]";

}
void visitMap(const map_t &m) const
{

std::cout << "{";
std::vector<std::string> keys;
for (map_t::const_iterator it = m.begin(); it != m.end(); ++it) {

keys.push_back(get<const char*>(it.key()));
}
std::sort(keys.begin(), keys.end());
for (std::vector<std::string>::iterator it = keys.begin();

it != keys.end(); ++it) {
std::cout << *it << "=";
apply_visitor(print_data(),

m.find(data_t(it->c_str())).value());
if (it+1 != keys.end()) std::cout << ", ";

}
std::cout << "}";

}
};

data_t data;
apply_visitor(print_data(), data);

Containers and custom values

The list_t and map_t classes are containers that hold a list or unordered (hash) map of data_t
elements (and for map_t, keys). These are similar in behavior to the C++ standard library classes
std::vector and std::unordered_map - with a subset of the methods available. list_tmaintains
order of the elements in them, and allows accesswith the operator[] overload or iterators returned
from begin and end (or rbegin and rend, or cbegin and cend). map_t does not maintain ordering,
and should give average O(1) cost for insertions and lookups. map_t does not permit a data_t
holding a custom_t value to be used as a key.

When using iterators over the map_t and list_t types, or references to entrieswithin the container,
you must not modify the parent container while iterating over it, or before accessing those
references. Trying to use an iterator after modifying the parent container will assert, or throw an
exception if asserts are disabled. There is no such protection for references. Note that if you have
a non-const map_t, then the operator[] can count as a mutation - it will add an entry if the entry
does not already exist.

The buffer_t is similar to list_t, but its element type is byte (uint8_t). buffer_t can be translated
to and from a Java byte[], but not to host plug-ins as there is no correlator type that maps to or
from them.

The custom_t type behaves like a std::unique_ptr to a user-specified class, with an explicit copy
method. The class must have a copy constructor and destructor that do not throw exceptions. It

Connecting Apama Applications to External Components 10.11.3 53

3 Developing Connectivity Plug-ins

is up to you to ensure that the correct type is used; but if all classeswrapped in custom_t are virtual,
then it is possible to use dynamic_cast or typeinfo to distinguish the types of the objects held by
custom_t. Note that visitors are called with a sag_underlying_custom_t reference; this needs to be
cast with static_cast to the expected custom_t<Type> reference. custom_t values can only be
passed between C++ plug-ins; they cannot be passed to host plug-ins or Java plug-ins (and you
need to ensure that the plug-ins share the same definition of the class).

Decimals

TheApamadecimal type is converted to/froma decimal_t struct. This has a single int64_twhich
is the bit pattern of the IEE754 64-bit floating point decimal. This can be serialized, copied or
moved, but no facilities are provided for arithmetic or conversion to string or normal floating
point types; a third-party decimal library is required if such functionality is required.

Copying, moving and swapping

The data_t and compound types list_t, map_t, buffer_t and custom_t deliberately hide access
to the copy constructor and assignment operator to avoid accidental copies. Explicit copies are
possible with the copy()method, which performs a deep copy (that is, for a map or list value, it
copies each element, and each element of those if they are compound types). Rather than copying
values, consider if the move constructor or move assignment operator can be used (these leave the
object moved from as empty). To call these, the argument needs to be enclosed in the std::move(
).

Map contents used by the apama.eventMap host plug-
in
The payloads that the apama.eventMap generates for transportward messages and that it requires
for hostwardmessages are maps. For Java chains, this is java.util.Map<Object, Object>. For C++
chains, this is a map_t.

Each key in the map is the name of a field in the EPL event definition and the value the
corresponding EPL value. Each event containing other events is represented as a Map value within
the top-level field, allowing nesting of events, dictionaries and sequences. For events sent from
chains into the correlator, all fields must have non-empty values and must be present as keys in
the map, unless the configuration setting allowMissing is set to true. Keys that do not correspond
to fields are ignored by default. There is an exception: an empty value that maps to an
optional<type> or any in EPL is permitted even if allowMissing is false (see also the descriptions
of the optional and any types in the API Reference for EPL (ApamaDoc)).

Events can be annotatedwith the com.softwareag.connectivity.ExtraFieldsDict annotation (see
"Adding predefined annotations" in Developing Apama Applications) which names a dictionary
field, in which case any unmapped keys are placed into this dictionary field. This can be disabled
with the extraFields configuration property. The dictionary must be one of:

dictionary<string,string> - Keys and values are coerced into strings. Lists generate the string
form of sequence<string>. Maps generate the string form of dictionary<string,string>.

54 Connecting Apama Applications to External Components 10.11.3

3 Developing Connectivity Plug-ins

dictionary<any,any> - Values are mapped to the corresponding EPL type, or sequence<any>
for lists and dictionary<any,any> for maps without names.

dictionary<string,any> - Keys are coerced into strings. Values aremapped as described above.

The types are converted as described below:

Hostward events can also
convert from types

Transportward events will
contain Java or C++ type

EPL type

java.util.Map or map_tEvent

java.util.Map or map_tdictionary

java.util.List or list_tsequence

java.util.Map or map_t (keys
are x1, y1, x2, y2)

location

java.lang.String or const
char* (if it is a string channel)

com.apama.Channel

all numeric types, booleanjava.lang.String or const
char*

string

all numeric types (except NaN
float values), strings if they can
be parsed as an integer

java.lang.Long or int64_tinteger

all numeric types, strings if they
can be parsed as a float

java.lang.Double or doublefloat

all numeric types, strings if they
can be parsed as a float

java.math.BigDecimal (but see
the notes below) or decimal_t

decimal

string, if true or falsejava.lang.Boolean or boolboolean

A Java object or data_t that
corresponds to an EPL value of

EPL values of type optional<T>
translate into one of the
following:

optional

type optional<T> is translated
if

null or corresponding Java
type (see the above
conversions), or

the Java object is null or of
type T,

a data_t that is either empty
or of type T (see the above
conversions).

data_t is empty or of type T.

Connecting Apama Applications to External Components 10.11.3 55

3 Developing Connectivity Plug-ins

Hostward events can also
convert from types

Transportward events will
contain Java or C++ type

EPL type

A Java object or data_t that
corresponds to an EPL value of
type any is translated if

EPL values of type any translate
into one of the following:

any

null or corresponding Java
type (see the above
conversions), or

the Java object is null or of
a concrete type (see above),

a data_t that is either empty
or of the underlying

data_t is empty or of a
concrete type (see above).

See also the note below for Event
mappings.

concrete type (see the above
conversions).

See also the note below for Event
mappings.

Note:
An any type containing an Event is represented as either com.softwareag.connectivity.NamedMap
or map_t and the name field is set to the event type.

Non-native conversions (a floating point to integer conversion or vice versa) may lose precision,
and conversions to/from strings or decimals are more expensive than float or integer conversions.
If anything other than an exact match is found, a debug-level log message is generated; you may
wish to verify that there are none if the conversion is performance-sensitive.

The following applies to Java only: an EPL decimal value which is NaN (not a number) or an
infinity is mapped to/from a Double representation of NaN or infinity, as the BigDecimal Java type
does not support them.

Events containing the following types cannot be sent into the correlator, as they cannot be serialized:

chunk

listener

action variables

Events containing the following can be sent in, provided allowMissing is set to true in the host
plug-in configuration and no value is provided for that field:

context

com.apama.exceptions.Exception

com.apama.exceptions.StackTraceElement

Events containing cycles cannot be sent into or out of the correlator, but arbitrary nesting is
permitted. Aliases will be flattened.

For Java plug-ins, handling messages from the apama.eventMap plug-in thus involves casting the
payload of themessage from Object to Map, and then accessingmembers of that, casting as necessary

56 Connecting Apama Applications to External Components 10.11.3

3 Developing Connectivity Plug-ins

(or, for flexibility, introspecting their types by using the instanceof operator). For example, for
the following event definition, the CustomerOrder is translated to a map with deliveryAddress,
userId and items keys, and itemswill be a list of maps containing itemId, price and qty.
event LineItem {

string itemId;
float price;
integer qty;

}
event CustomerOrder {

string deliveryAddress;
string userId;
sequence<LineItem> items;

}

To print the total cost of an order (sum of product of qty and price for each item), the Java code
would be as follows:
public void deliverMessageTowardsTransport(Message message) {

MapExtractor mList = new MapExtractor((Map)message.getPayload(),
"CustomerOrder");

List<MapExtractor> items = mList.getListOfMaps("items", false);
double total = 0.0;
for(MapExtractor item : items) {

double price = item.get("price", Double.class);
long qty = item.get("qty", Long.class);
total = total + price * qty;

}
LOGGER.info("Order value is "+total);

}

Note that due to type erasure, the type parameters on Map or List are not checked or guaranteed.
In the above example, it is convenient to cast the list representing EPL field sequence<LineItems>
to List<Map> to avoid having to cast the entries within it. The Map, however, is still treated as a
map of objects as it has different types (String, Double, Long) in it.

ForC++ plug-ins, handlingmessages from the apama.eventMapplug-in involves using the get<map_t>
function and accessing the members of that, using get<> as necessary. If code needs to be flexible
as to which type it accepts, then use the visitor pattern (see “C++ data types” on page 51). For
example, using the event definition above, the following C++ code will print the total cost of the
order:
virtual void deliverMessageTowardsTransport(Message &message) {

map_t &payload = get<map_t>(message.getPayload());
list_t &items = get<list_t>(payload[data_t("items")]);
double total = 0.0;
for(list_t::iterator it = items.begin(); it != items.end(); it++) {

MapExtractor m(get<map_t>(*it), "LineItem");
double price = m.get<double>("price");
long qty = m.get<int64_t>("qty");
total = total + price * qty;

}
logger.info("Order value is %f", total);

}

The following constructs and sends an order with one line item into the correlator:

Connecting Apama Applications to External Components 10.11.3 57

3 Developing Connectivity Plug-ins

Map<String,Object> payload = new HashMap<>();
payload.put("deliveryAddress", "1 Roadsworth Avenue");
payload.put("userId", "jbloggs");
List<Map> items = new ArrayList<>();
Map<String,Object> item = new HashMap<String,Object>();
item.put("itemId", "item1");
item.put("price", 3.14);
item.put("qty", 10);
items.add(item);
payload.put("items", items);

Map<String, String> metadata = new HashMap<String, String>();
metadata.put(Message.HOST_MESSAGE_TYPE, "CustomerOrder");
Message msg = new Message(payload, metadata);
hostSide.sendBatchTowardsHost(Collections.singletonList(msg));

The above can also be written more compactly:
hostSide.sendBatchTowardsHost(Collections.singletonList(new
Message(payload).putMetadataValue(Message.HOST_MESSAGE_TYPE,"CustomerOrder")));

Thiswould typically be done in amore automated fashion, translating data from some other form,
rather than laboriously setting each field as needed - though some combination will often be
needed.

The equivalent C++ code is:
map_t payload;
payload.insert(data_t("deliveryAddress"), data_t("1 Roadsworth Avenue"));
payload.insert(data_t("userId"), data_t("jbloggs"));
list_t items;
map_t item;
item.insert(data_t("itemId"), data_t("item1"));
item.insert(data_t("price"), data_t(3.14));
item.insert(data_t("qty"), data_t((int64_t) 10));
items.push_back(data_t(std::move(item)));
payload[data_t("items")] = data_t(std::move(items));

Message msg(data_t(std::move(payload)));
msg.putMetadataValue(Message::HOST_MESSAGE_TYPE(), "CustomerOrder");
hostSide->sendBatchTowardsHost(&msg, (&msg)+1);

Metadata values
Every message has a metadata member, which for Java is a Map object containing String keys and
Object values. For C++, it is a map_twhich by convention only contains const char * keys, but
any type as values.

The metadata holds information about the event:

DescriptionValue

The name of the event type. This is required when sending events into
the apama.eventMap plug-in, unless the defaultEventType configuration

sag.type

58 Connecting Apama Applications to External Components 10.11.3

3 Developing Connectivity Plug-ins

DescriptionValue

property is set. For the apama.eventString plug-in, the event type name
comes from the string form of the event itself.

The name of the channel from which the event originated or to which it
is to be delivered. This is optional for hostwards messages.

sag.channel

Note:
If the transport uses the same channel through its lifetime, it is
recommended that you set the defaultChannel property in the
configuration file, rather than setting the sag.channel for every
message. See also “Host plug-ins and configuration” on page 30.

The message identifier. This is used for reliable receiving (that is, in
reliablemessages going towards the host). Themessage identifier should

sag.messageId

be unique within the scope of the chain and deployment and during the
lifetime of the application. Typically it will be generated by the message
bus to which the connectivity plug-in transport is connected. See also
“Using reliable transports” on page 33.

CAUTION:
If you are using a codec to make the message identifier visible as an
event field in EPL, it is important to copy the value from sag.messageId.
Moving the value (and thus removing it from sag.messageId) will
disrupt reliable receiving.

In Java, these values are available as constants on the Message class:

Message.HOST_MESSAGE_TYPE

Message.CHANNEL

Message.MESSAGE_ID

In C++, these are the following methods:

HOST_MESSAGE_TYPE()

CHANNEL()

MESSAGE_ID()

Plug-in components can use the metadata to pass other auxiliary data about a message between
chain components. These could be headers from an HTTP connection, authentication tokens, or
signalling for transaction boundaries. It is recommended that all metadata keys are namespaced.
The sag namespace is reserved for SoftwareAGuse.Host plug-ins currently only use themetadata
keys above.

The metadata contents can be manipulated directly by calling methods on the map returned by
Message.getMetadataMap(). A Message.getMetadata() is also available in order to manipulate the

Connecting Apama Applications to External Components 10.11.3 59

3 Developing Connectivity Plug-ins

stringified version of the metadata values. Values can be inserted into the metadata by using
Message.putMetadataValue(...).

Lifetime of connectivity plug-ins
Instances of connectivity chains can be created in different ways. See “Static and dynamic
connectivity chains” on page 26 for detailed information.

At correlator startup:

Each codec, transport and dynamic chain manager class is loaded using the classpath or
libraryName.

Each dynamic chain manager listed in dynamicChainManagers is instantiated using its public
constructor and passing the managerConfig from the configuration file.

The start()method is called on any dynamic chain managers. Chain managers can create
dynamic chains at any point after this, though in practice, dynamic chains are usually created
after correlator startup, once the Apama application is injected and running.

Each chain listed in startChains is created and started (see below).

The correlator is only pingable and available for external access after all of the above operations
have completed.

Whenever a new chain instance is created (either during correlator startup if listed in startChains,
or at any time dynamically by EPL or a chain manager):

The correlator determines the list of codec and transport plug-ins in the chain and the
configuration for each as follows:

If the chain is statically configured, the plug-ins and plug-in configurations listed under
startChains are used.

If the chain is being created dynamically, the chain manager implementation or EPL
createDynamicChain call specifieswhich of the chain definitions listed under dynamicChains
is to be used, and the configuration for this chain instance is prepared by replacing any
@{varname} runtime substitution variables in the chain definition using the map passed in
to createCreate or supplied by the chain manager.

A new instance of each transport and codec class in the chain is constructed using the public
constructor, as described in “Requirements of a plug-in class” on page 43. If the transport has
a dynamic chain manager, the manager's createTransportmethod is used instead of calling
the transport constructor directly (for Java) or extra parameters to the createChain call are
passed through to the constructor (C++), which gives the chain manager the opportunity to
pass extra information required by the managed transport (such a reference to itself).

hostSide and transportSidemembers are set on all transport and codec plug-ins in the chain.

Static and EPL-created chains are started automatically once created. Chain managers must
explicitly call start() on the newly created chain when they are ready.

The start()method is first called on all codecs in the chain.

60 Connecting Apama Applications to External Components 10.11.3

3 Developing Connectivity Plug-ins

Then the start()method is called on the transport.

Messages may begin flowing.

If any of the constructors or start()methods invoked during correlator startup throw an exception,
that will be logged as an error and the correlator will fail to start. These methods should complete
quickly; delays here will delay the correlator starting up. Blocking or long running operations
should be handled by a separate thread.

After start() is called on all members of the chain, events may flow through the chain in either
direction (if an EPL application is emitting events to the chain, they will be delivered as messages
and delivered through the codecs towards the transport). The transport is permitted to send events
hostwards, but they will be queued by the correlator until the application is ready for them.

Soon after the EPL application has been injected (and, if necessary, it has performed initialization),
the EPL application should call ConnectivityPlugins.onApplicationInitialized(). At this point:

hostReady() is called on every codec.

hostReady() is called on the transport.

Dynamic chains that are created after onApplicationInitializedhas been calledwill have hostReady
called as soon as the chain is created.

If an exception is thrown by a plug-in's hostReady()method or by the start()method of a
dynamically instantiated plug-in, thatwill be logged as an error and the chainwill be disconnected.
These methods should complete quickly; delays here will delay the EPL application. Blocking or
long running operations should be handled by a separate thread. Any events previously sent to
the host will now be delivered, but the order of all events from a chain will be maintained.

When the correlator is shut down (for example, via engine_management -s) or when the dynamic
chain is destroyed by EPL or a dynamic chain manager, chains will be stopped:

shutdown() is called on all chain managers (if any exist)

shutdown() is called on every codec.

shutdown() is called on the transport.

The shutdown()method gives chain managers an opportunity to destroy any chains they are
managing in an orderly fashion.

The shutdownmethod on transports should make the transport discard any further messages sent
to the transport, and unblock if any threads are currently deliveringmessages to the transport and
are blocked. If possible, the sendEventsTowardsTransportmethod should be written to allow any
blocking behavior to be unblockedwhen a shutdown occurs. For example, if a socket is being used
by a transport, it should be shut down or closed so that any threads reading or writing on the
socket's streams terminate.

Any messages delivered to a plug-in once the shutdownmethod has been called may be discarded
by the plug-in. Messagesmay be delivered to a plug-in even after the shutdown call has completed,
and the plug-in should not crash if that occurs.

Connecting Apama Applications to External Components 10.11.3 61

3 Developing Connectivity Plug-ins

If threads are required by a transport to deliver events to the transport or read from a connection,
they would normally be started by the hostReadymethod and stopped and joined in the shutdown
method.

Note:
For C++ plug-ins only: the plug-in object of each plug-in is destroyed, so the plug-in class's
destructor (if defined) is called. No events should be flowing through a chain at this point.

Exceptions thrown from any of sendBatchTowards, transformEvent or deliverEventwill be logged
and not propagated to their callers. Exceptions are not a suitable means to provide information
between plug-ins as they are ambiguous if a large batch of events are being processed, and some
codecs may choose to send events on a separate thread. Use messages to send such events; these
can be null payloadwith information stored in themetadata, inwhich casemost codecswill ignore
the messages and pass them through.

Creating dynamic chains from a chain manager plug-
in
If a transport has an associated chain manager, the chain manager is responsible for creating all
chains involving that transport. Note that this is the only way to create chains involving such a
transport, they cannot be created using startChains or from EPL's
ConnectivityPlugin.createDynamicChain action.

Chainmanagersmay create chains at any time after start() has been called and before shutdown(),
and for any reason. However, most managers create chains in response to a notification that a
channel has been created, which means it is in use for the first time. See “Requirements of a
transport chain manager plug-in class” on page 47 for more information about how to do this.

When a chain manager is ready to create a new chain, it does so by calling
ChainManagerHost.createChain(), usually making use of the host field on AbstractChainManager.
The following information must be supplied when creating a chain:

chainInstanceIdSuffix - A string identifier which will be suffixed onto managerName“-” to
uniquely identify the new chain instance.

CAUTION:
A small amount of memory is allocated for each unique chain instance identifier. This
memory is not freedwhen the chain is destroyed. Therefore, if you are creatingmany chains,
consider reusing old chain instance identifiers. If you createmore than 1000 unique identifiers,
a warning is written to the correlator log file to notify you of this. You cannot have two
active chains with the same chain instance identifier, so only reuse identifiers which are no
longer in use.

dynamicChainDefinition - Specifies which of the chain definitions that contain this transport
should be used. The AbstractChainManager provides getChainDefinition() helper methods
to select a chain definition based on its identifier or by assuming that only one definition will
be configured. Formore complex cases, a collection of all the chain definitions for this transport
is provided in the chainDefinitions field which a manger can iterate over to find the one with

62 Connecting Apama Applications to External Components 10.11.3

3 Developing Connectivity Plug-ins

the desired transport plug-in configuration. There are various possible approaches to selecting
which chain definition to use to create a chain:

For some managers, it may not make sense to support multiple chain definitions and can
be written to just use a singleton chain definition.

Some managers may allow the user to specify a chain definition by providing a chain
definition identifier as a configuration option for the manager in managerConfig.

Another approach is for the manager to search through the available chain definitions and
use the transport plug-in's configuration of each one to decide which to use, for example,
by providing a channel prefix or regular expression pattern as part of the transport
configuration.

substitutions - The chainmanager can provide zero ormore @{varname} variable replacement
values. This provides a way to use information from the manager or transport to configure
the host or codec plug-ins, for example, by having the Mapper codec set a field with details
about the manager's connection.

defaultChannelTowardsHost and subscribeChannels - Used to specify the channel or channels
that this chain will send to (unless overridden in individual messages) or subscribe to. You
can either use a single chain to send messages in both directions, or have a separate chain for
each direction, that is, each transport instancewill only be responsible for sending or receiving,
but not both.

The transport from the chain definition shouldmatch the transport that contains the chainmanager
making the call. To create the transport object, the chain host will call createTransport rather than
the transport's constructor (for Java), or the transports constructor, passing through any extra
parameters passed to createChain (for C++). Once the chain has been created, it needs to be started
by calling the start()method on the returned Chain object (a Chain pointer for C++).

Formore detailed information about the classes and interfaces involved in creating a chainmanager,
see theAPI Reference for Java (Javadoc) on the com.softwareag.connectivity.chainmanagerspackage,
or see theAPI Reference for C++ (Doxygen) on the com::softwareag::connectivity::chainmanagers
namespace.

User-defined status reporting from connectivity plug-
ins
Connectivity plug-ins can add any number of user-defined status values which are reported as
part of the correlator's status information from the REST API, the engine_watch tool, the Engine
Client API, and from the EPLManagement interface. Status values can be reported by transports,
codecs, or dynamic chain managers.

If the status keys follow the conventions listed in "Monitoring KPIs for EPL Applications and
Connectivity Plug-ins" inDeploying and Managing Apama Applications, the status and KPIs of your
application's connectivity plug-ins can be displayed by Command Central.

For example, a transport plug-in might report a status value to indicate whether it is currently
online and working correctly, or failed. Or it can report numeric KPIs indicating the number of

Connecting Apama Applications to External Components 10.11.3 63

3 Developing Connectivity Plug-ins

messages sent towards the host (correlator) and towards the transport. A dynamic chain manager
might report information about a connection it maintains, and perhaps provide someKPI statistics
aggregated across all the transport instances it is managing.

To report status information, create a status item by calling the
getStatusReporter().createStatusItem(...)method on your plug-in class, specifying the key
for this status item and its initial value, and store the resulting StatusItem object in a field so its
value can be updated as necessary. Status items are automatically removed when a transport or
codec plug-in is shut down or when the chain is destroyed (in C++, this assumes the StatusItem
is held by a std::unique_ptr in a member of the plug-in class, as we recommend). Be sure to use
a unique name to identify the plug-in in each status key; we recommend using the chainId and
pluginName as a prefix for transport and codec plug-ins, or the managerName for chain managers.
Status keyswill have leading and trailingwhitespace stripped. Keys cannot be empty. For example,
in Java:
final StatusItem transportStatus =
getStatusReporter().createStatusItem(chainId+"."+pluginName
+ ".status", StatusReporter.STATUS_STARTING);

final StatusItem messagesTowardsHost =
getStatusReporter().createStatusItem(chainId+"."+pluginName
+".messagesTowardsHost", 0);

...

transportStatus.setStatus(StatusReporter.STATUS_ONLINE);
messagesTowardsHost.increment();

Or in C++:
std::unique_ptr<StatusReporter::StatusItem> transportStatus;
std::unique_ptr<StatusReporter::StatusItem> messagesTowardsHost;

MyPluginConstructor(...):
: ...,

transportStatus(getStatusReporter().createStatusItem(
chainId+"."+pluginName+".status",
StatusReporter::STATUS_STARTING())),

messagesTowardsHost(getStatusReporter().createStatusItem(
chainId+"."+pluginName+".messagesTowardsHost", 0))

{ ...
}

...
transportStatus->setStatus(StatusReporter::STATUS_ONLINE());
messagesTowardsHost->increment();

We recommend using the STATUS_* constants provided on StatusReporter for values of ".status"
items, to provide consistency and allow the status to be represented correctly if viewed using
Command Central.

In addition to the StatusItem interface, there is a separate method for atomically setting multiple
related items in a single call (for example, a status and an error message). But as the StatusItem
method ismore efficient, it should be used inmost cases, especially for items thatmight be updated
frequently such as message counters.

64 Connecting Apama Applications to External Components 10.11.3

3 Developing Connectivity Plug-ins

All user-defined status values are currently represented as strings, but for convenience when
reporting KPI numbers, an overload of setStatus exists that accepts an integer argument for the
value, which is automatically converted to a string by the method. There is also an increment()
method.

For transports and codecs, status reporting is only permitted when your plug-in provides the
TransportConstructorParameters and CodecConstructorParameters constructors. It is not supported
when using the older deprecated constructors.

For examples of how to report status information from a connectivity plug-in, see the samples\
connectivity_plugin\cpp\httpclient and samples\connectivity_plugin\java\HTTPServer
directories of your Apama installation.

See the StatusReporter interface in the API Reference for Java (Javadoc) and API Reference for C++
(Doxygen) for more information about how to report status.

See also "Using theManagement interface" inDeveloping Apama Applications for information about
how status values can be set and retrieved by EPL code.

For other ways to view the correlator's status, see "Managing and Monitoring over REST" and
"Watching correlator runtime status", both in Deploying and Managing Apama Applications

Logging and configuration
For Java plug-ins, the plug-in's constructor is passed a configuration object, the chain name and
a logger object. The Abstract classes supplied store these as members (the logger object is named
logger).

For C++ plug-ins, the Abstract classes have a loggermember with methods to log at log levels
from TRACE to CRIT, with a printf format and variadic arguments. Expensive computations can
be predicated on a check of is<Level>Enabled().

Plug-ins should use the SLF4J logger object provided for logging. You should avoid using
System.out or System.err for logging. For both plug-ins written in C++ and Java, log messages are
prefixed with connectivity.PluginName.ChainName, which is also the category to configure log
levels using the correlatorLogging section in the YAML configuration file (see "Setting correlator
and plug-in log files and log levels in a YAML configuration file" inDeploying andManaging Apama
Applications). This means, it is not required to identify the plug-in or chain in every log statement.

If your plug-in uses a third-party library that logs with SLF4J or Log4j 2, then the log output goes
to the main correlator log file automatically. You can customize log levels as needed using
correlatorLogging in the YAML configuration file (see "Setting correlator and plug-in log files
and log levels in a YAML configuration file" inDeploying andManaging Apama Applications). When
using a library which uses some other logging implementation, such as Log4j 1, the JDK logger,
or Apache Java commons logging (JCL), then add a bridging jar to convert it to SLF4J where
possible. Several bridges are available in the common/lib/ext and common/lib/ext/log4j directories
of your Software AG installation.

The configuration contains the definitions from the configuration file for connectivity plug-ins
(any globalConfig is merged with the per-chain configuration so that the per-chain configuration

Connecting Apama Applications to External Components 10.11.3 65

3 Developing Connectivity Plug-ins

takes precedence). The configuration is a map with String keys. The values will be one of the
following classes:

List<Object> (for C++, data_t of type list_t) for list YAML entries. Each element will be one
of these types.

Map<String, Object> (for C++, data_t of type map_t) for map YAML entries. Each value will
be one of these types.

String (for C++, data_t of type const char *). Even if the entry in the configuration file is
numeric or a boolean, it will be provided as a string.

Plug-ins should use the MapExtractor class to extract values from the configuration map which
makes it easy to check for invalid configuration options and produce helpful error messages if a
required value is missing or of the wrong type.

You can also use the Diagnostic codec to diagnose issues with connectivity plug-ins. See “The
Diagnostic codec connectivity plug-in” on page 228 for further information.

Threading
For events being delivered from the correlator to a chain towards the transport, the correlator will
only ever call sendBatchTowardsTransport from a single thread at a time. Most codecs will call the
next component in the chain in the thread that invoked them, but are not required to. A codec can
queue events and drain the queue from a separate thread if desired.

Transports and codecs should only make a single call at a time to the hostSide plug-in (and thus
only one thread at a time passes events towards the host) as the next plug-inmay not be thread-safe.
Similarly, codecs should only make one call at a time to the transportSide plug-in, though one
codecmay have threads invoking both hostSide and transportSide concurrently. Plug-ins should
not assume that they are called on the same thread each time (in particular, the correlator will use
different threads for sending batches of events), but they can assume that nomore than one thread
at a time sends events to the transport.

Transports and codecs will typically be processing events towards the transport and towards the
host in different threads concurrently. The start, hostReady and shutdownmethods will be called
from different threads to any other operation and while other calls are in progress.

When a chain is disconnected or when the correlator is shut down, the shutdownmethod on the
plug-in is called. This should ensure the following:

Any threads calling into the plug-inwhich are blocked in the plug-in (particularly for transports)
should unblock and return.

Any threads that the plug-in has started have been stopped and joined.

The plug-in should ensure any in-progress calls out to other plug-ins have completed.

The plug-in must ensure no more calls are made out of a plug-in to send messages to other
plug-ins.

66 Connecting Apama Applications to External Components 10.11.3

3 Developing Connectivity Plug-ins

This is particularly important for C++ plug-ins.Methods calling out after returning from shutdown,
or in progress at the point the shutdownmethod completes, could cause a crash. In practice, a
plug-in that starts a thread to read from a socket or other connection and send messages towards
the host should close the socket and join the thread (waiting for it to terminate) to meet these
requirements.

For C++ plug-ins, we recommenduse of the standard libraries such as std::thread and std::mutex
for managing threads and locking in plug-ins. If not available, we provide some simple macros
in the sag_connectivity_threading.h header file. See theAPI Reference for C++ (Doxygen) for using
it.

Developing reliable transports
This section explains how to develop transports that support reliable messaging. For information
on how to use them, see “Using reliable transports” on page 33.

Reliable messaging uses control messages, which are special messages that are sent between the
host and the transport. They are used to signal actions that the host or transport should take as
well as the acknowledgments from these actions. The control messages have null (Java) or empty
(C++) payloads, and instead store all their information in the metadata.

The type of a control message is stored in a metadata field that can be accessed with the
CONTROL_TYPE constant of the com.softwareag.connectivity.Message (Java) or
com::softwareag::connectivity::Message (C++) class. The value of this field should be one of the
type names listed below. These names are also accessed by constants. For more information, see
the Message class in the API Reference for Java (Javadoc) or API Reference for C++ (Doxygen).

DescriptionConstantType

This control message is sent from the
transport to the host. It is used to ask the

CONTROL_TYPE_ACK_REQUIREDAckRequired

host to acknowledge all events that have
been sent towards the host before this
AckRequired.

This controlmessage is sent from the host
to the transport, and it is the

CONTROL_TYPE_ACK_UPTOAckUpTo

acknowledgment for the AckRequired
control message. It is used to inform the
transport that a particular AckRequired
request has been fulfilled.

This controlmessage is sent from the host
to the transport. It is used to ask the

CONTROL_TYPE_FLUSHFlush

transport to acknowledge all events that
have been sent towards the transport
before this Flush.

This control message is sent from the
transport to the host, and it is the

CONTROL_TYPE_FLUSH_ACKFlushAck

Connecting Apama Applications to External Components 10.11.3 67

3 Developing Connectivity Plug-ins

DescriptionConstantType

acknowledgment for the Flush control
message. It is used to inform the host that
a particular Flush request has been
fulfilled.

The controlmessagemetadata also contains fields that can be accessedwith the following constants:

MESSAGE_ID

This constant names ametadata field used for uniquely identifying non-controlmessages (that
is, real events with payloads) that are being sent towards the host. This constant also names a
metadata field on the AckRequired and AckUpTo control messages that are used for reliable
receiving. In AckRequired, it contains the message identifier of the immediately preceding
non-control message. In AckUpTo, it contains the message identifier of the AckRequired that is
being responded to.

REQUEST_ID

This constant names a metadata field on the Flush and FlushAckmessages that are used for
reliable sending. The field denotes a unique identifier for matching up a Flushwith its
corresponding FlushAck.

Transports receive and send the above-mentioned control messages. The exact logic of how they
should be processed depends on the exact nature of the external system that the transport connects
to. More information and examples are provided below.

Note:
The Java examples below are not intended to be used as a starting point. They only illustrate
the core concept of handling control messages.

Writing a transport for reliable receiving

This section describes the obligations of a transport thatwishes to see acknowledgments ofmessages
that it is sending towards the host, in order that it can pass those acknowledgments to the reliable
messaging system that it is connected to. Such a transport must declare its reliability before any
messaging can take place, before the plug-in is fully started. This is achieved by calling the
enableReliability function on the PluginHostmember of the transport, either from the constructor
or start()method.
public MyReliableTransport(Logger logger, TransportConstructorParameters params)
throws IllegalArgumentException, Exception

{
super(logger, params);
host.enableReliability(Direction.TOWARDS_HOST);

}

A transport must place unique identifiers on any non-control messages (that is, real events) that
it is sending towards the host. Ideally, these correspond to identifiers provided by the remote
messaging system that your code is receiving from. While not 100% necessary, it makes tracing a
message through the wider system much easier.

68 Connecting Apama Applications to External Components 10.11.3

3 Developing Connectivity Plug-ins

MyExternalMessage externalMessage = fictionalRemoteSystem.get();
Message msg = transformToMessage(externalMessage);
msg.putMetadataValue(Message.MESSAGE_ID,

externalMessage.getUniqueIdentifier());
hostside.sendBatchTowardsHost(Collections.singletonList(msg));

A transport must decide how regularly it wishes to receive acknowledgments (AckUpTo) from the
host application, by deciding when it sends AckRequired control messages towards the host. In
general, you should attempt to space these messages as widely as possible, so as not to put too
much burden on the EPL application. The steps taken to “commit” the effects of received events
may be quite expensive. However, the frequency of acknowledgments will probably also be
constrained by the nature of the remote messaging system your transport is connected to. For
example, it may only permit 1,000 unacknowledged messages to be outstanding before blocking
receipt of further messages. In this case, you will want to be sending out AckRequired control
messages after every n real messages where n is a large fraction of 1,000.

Time is another factor to consider. In the worst case, for example, if acknowledgments are too
sparse, a reconnecting application may face 10 minutes of redelivered messages that did not get
acknowledged in a previous session. So in general, a transport should make sure to issue
AckRequired controlmessages at least every few seconds, assuming that any non-controlmessages
have been sent towards the host since the last AckRequired.

An AckRequired control message must also contain the message identifier of the preceding
non-control message, in order to identify which tranche of previous messages is covered by a
corresponding acknowledgment.
Message ackRequired = new Message(null);
ackRequired.putMetadataValue(Message.CONTROL_TYPE,

Message.CONTROL_TYPE_ACK_REQUIRED);
ackRequired.putMetadataValue(Message.MESSAGE_ID, lastId);

Finally, a transport should be prepared to act on acknowledgments received from the EPL
application, that is, AckUpTo control messages from the host. Each AckUpTo corresponds exactly to
a previously issued AckRequired, with both containing the same MESSAGE_ID. AckUpTomessages
are seen in the exact same order that the AckRequiredmessages were issued.
public void deliverNullPayloadTowardsTransport(Message message)
throws Exception {

Map<String, Object> metadata = message.getMetadataMap()
if (metadata.containsKey(Message.CONTROL_TYPE))
{

String controlType = (String)metadata.get(Message.CONTROL_TYPE);
if(Message.CONTROL_TYPE_ACK_UPTO.equals(controlType))
{

String messageId = metadata.get(Message.MESSAGE_ID);
fictionalRemoteSystem.ackUpToAndIncluding(messageId);

}
}

}

Connecting Apama Applications to External Components 10.11.3 69

3 Developing Connectivity Plug-ins

Writing a transport for reliable sending

This section describes the obligations of a transport that wishes to reliably acknowledgemessages
that are being sent to it from an EPL application, that is, from the host. As before, the transport
should declare its reliable nature and direction.
public MyReliableTransport(Logger logger, TransportConstructorParameters params)
throws IllegalArgumentException, Exception

{
super(logger, params);
host.enableReliability(Direction.TOWARDS_TRANSPORT);

}

The transport should be prepared to act on Flush control messages, ensuring that all preceding
non-control messages are reliably delivered to a remote reliable messaging system. Once done,
the transport should respondwith a FlushAck controlmessage towards the host, with a REQUEST_ID
set to match it with the corresponding Flush.

Frequent Flushmessages are automatically coalesced into individual messages that are more
widely spaced. So a transport need not be concerned with the performance impact of responding
to every Flush request. Also, Flushmessages are subsumed by subsequent Flushmessages and
their acknowledgments. For example, if a transport receives three Flushmessages, a FlushAck
corresponding to the final Flush is interpreted as being a response to all three.
@Override
public void deliverNullPayloadTowardsTransport(Message message)
throws Exception {

Map<String, Object> metadata = message.getMetadataMap();
if (metadata.containsKey(Message.CONTROL_TYPE))
{

String controlType = (String)metadata.get(Message.CONTROL_TYPE);
if(Message.CONTROL_TYPE_FLUSH.equals(controlType))
{

fictionalRemoteSystem.commitEverythingSoFar();
Message response = new Message(null);
response.putMetadataValue(Message.CONTROL_TYPE,

Message.CONTROL_TYPE_FLUSH_ACK);
response.putMetadataValue(Message.REQUEST_ID,

Long.parseLong(metadata.get(Message.REQUEST));
hostSide.sendBatchTowardsHost(Collections.singletonList(response));

}
}

}

General notes for developing transports

OpenSSL

OpenSSL initialization and cleanup is handled internally by the correlator process itself.
User-developed transports must not perform these tasks.

70 Connecting Apama Applications to External Components 10.11.3

3 Developing Connectivity Plug-ins

II Standard Connectivity Plug-ins

4 The Universal Messaging Transport Connectivity Plug-in .. 73

5 The MQTT Transport Connectivity Plug-in ... 93

6 The Digital Event Services Transport Connectivity Plug-in .. 101

7 The HTTP Server Transport Connectivity Plug-in .. 107

8 The HTTP Client Transport Connectivity Plug-in .. 131

9 The Kafka Transport Connectivity Plug-in .. 157

10 The Cumulocity IoT Transport Connectivity Plug-in .. 163

11 Codec Connectivity Plug-ins .. 209

Connecting Apama Applications to External Components 10.11.3 71

72 Connecting Apama Applications to External Components 10.11.3

II Standard Connectivity Plug-ins

4 The Universal Messaging Transport Connectivity

Plug-in

■ About the Universal Messaging transport .. 74

■ Overview of using Universal Messaging in Apama applications 74

■ Setting up Universal Messaging for use by Apama .. 81

■ Configuring the Universal Messaging connectivity plug-in ... 82

■ EPL and Universal Messaging channels .. 91

■ Using Universal Messaging connectivity from EPL .. 91

■ Monitoring Apama application use of Universal Messaging ... 92

Connecting Apama Applications to External Components 10.11.3 73

About the Universal Messaging transport
Universal Messaging is Software AG's middleware service that delivers data across different
networks. It provides messaging functionality without the use of a web server or modifications
to firewall policy. In Apama applications, you can configure and use the connectivity provided
by Universal Messaging.

You can use theApama integration toUniversalMessaging as a simpler andmore deeply integrated
alternative to connecting to a Universal Messaging realm via the JavaMessage Service (JMS). This
can be used both to connect different Apama components together using the internal Apama
message format and for integrating with non-Apama systems over Universal Messaging. The
UniversalMessaging connectivity plug-in supports configurablemapping betweenApama events
and whatever formats the non-Apama components are using.

Only Universal Messaging channels can be used with Apama.

This transport provides a dynamic chain manager which creates chains automatically when EPL
subscribes or sends to a correlator channel with the configured prefix, typically um:. The selection
of which dynamicChains definition to use is based on the channelPattern regular expression
configured in the Universal Messaging transport of each dynamic chain. See “Configuring the
Universal Messaging connectivity plug-in” on page 82 for more details on the mapping between
correlator channel names and the associated Universal Messaging channel or topic names.

Note:
Universal Messaging queues are not supported in this Apama release.

The Universal Messaging connectivity plug-in does not support reliable messaging.

Overview of using Universal Messaging in Apama
applications
In an Apama application, correlators can connect to Universal Messaging realms or clusters. A
correlator connected to a Universal Messaging realm or cluster uses Universal Messaging as a
message bus for sending Apama events between Apama components. Connecting a correlator to
Universal Messaging is an alternative to specifying a connection between two correlators by
executing the engine_connect correlator tool.

UsingUniversalMessaging can simplify anApama application configuration. Instead of specifying
many point-to-point connections, you specify only the address (or addresses) of the Universal
Messaging realm or cluster. Apama components connected to the sameUniversalMessaging realm
can use Universal Messaging channels to send and receive events. (Universal Messaging channels
are equivalent to JMS topics.) Connections to Universal Messaging are automatically made as
needed, giving extra flexibility in how the application is designed.

When an Apama application uses Universal Messaging, a correlator automatically connects to the
requiredUniversalMessaging channels. There is no need to explicitly connectUniversalMessaging
channels to individual correlators. A correlator automatically receives events on Universal

74 Connecting Apama Applications to External Components 10.11.3

4 The Universal Messaging Transport Connectivity Plug-in

Messaging channels that monitors subscribe to and automatically sends events to Universal
Messaging channels.

When using the connectivity plug-in for Universal Messaging, you can also talk to non-Apama
applications which are connected to Universal Messaging and configure a chain definition to
translate those message payloads into ones suitable for Apama.

Comparison of Apama channels and Universal Messaging
channels
In an Apama application configured to use Universal Messaging, when an event is sent and a
channel name is specified, the default behavior is that Apama determines whether there is a
UniversalMessaging channelwith that name. If there is, thenApamauses theUniversalMessaging
message bus and the specifiedUniversalMessaging channel to deliver the event to any subscribers.
Subscribed contexts can be in either the originating correlator or other correlators connected to
the Universal Messaging broker.

If a Universal Messaging channel with the specified name does not exist, then the default is that
the channel is an Apama channel. An event sent on anApama channel is delivered to any contexts
that are subscribed to that channel.

Regardless of whether the channel is a UniversalMessaging channel or an Apama channel, events
are delivered directly to receivers that are connected directly to the correlator.

The following table compares the behavior of Apama channels andUniversalMessaging channels.

Universal Messaging channelsApama channels

Specification of the same Universal Messaging
realm address or addresses.

Configuration of multiple point-to-point
connections.

Startup options for connected correlators specify
the same Universal Messaging realm to connect

Each execution of engine_connect specifies the
correlator to connect to. Each IAF adapter

to. Each IAF adapter configuration specifies theconfiguration specifies each correlator that
adapter connects to. same address for connecting to Universal

Messaging.
Correlators and IAF adapters require explicitly
set connections to communicatewith each other. Correlators and IAF adapters automatically

connect toUniversalMessaging to communicate
with each other.

No configuration change is needed when an
Apama component is moved to a different host

Configuration changes are required when an
Apama component is moved to a different host.

if both hosts are connected to the sameUniversal
Messaging realm.

Outside a correlator, channel subscriptions can
be fromanyApama component connected to the
same Universal Messaging realm.

Outside a correlator, channel subscriptions can
be from only explicitly connected Apama
components.

Connecting Apama Applications to External Components 10.11.3 75

4 The Universal Messaging Transport Connectivity Plug-in

Universal Messaging channelsApama channels

Events sent on a Universal Messaging channel
go to the Universal Messaging broker and then
to subscribers.

Events sent on an Apama channel go directly to
subscribers.

Connection to a Universal Messaging realm is
independent of application code.

Connection configurationsmust be synchronized
with application code.

More efficient for sending the same event to
many Apama components.

Less efficient for sending the same event tomany
Apama components.

Less efficientwhen sending an event to a context
in the same correlator. The event leaves the

More efficient when sending an event to a
context in the same correlator. The event stays
inside the correlator. correlator, enters theUniversalMessaging realm,

and then returns to the correlator.

No default channel.Default channel, the empty string, is allowed.

Choosing when to use Universal Messaging channels and when
to use Apama channels
Typically, you want to

Use Universal Messaging channels to send events from one correlator to another correlator,
from adapters to correlators, or from correlators to external receivers. You also might want to
use Universal Messaging channels when your application needs the flexibility for a monitor
or context to be moved to another correlator. With Universal Messaging, you can re-deploy
monitors sending or subscribing to Universal Messaging channels among the correlators
connected to the same Universal Messaging realm without having to change any of the
configuration for the Universal Messaging connectivity.

Use Apama channels to send events from one context to one or more contexts in the same
correlator.

Consider the case of multiple correlators connected to the same Universal Messaging realm.
Specification of a Universal Messaging channel lets events pass between a context sending events
on the channel and a context subscribed to that channel, regardless of whether the two contexts
are

in the same correlator, or

in different correlators on the same host, or

in different correlators on different hosts.

The first time a channel is used, the default behavior is that Apama determines whether it is a
Universal Messaging channel or an Apama channel, and the designation is cached. After the first
use, the presence or not of the channel in the Universal Messaging broker is cached, so further use
of the channel is not impacted.

76 Connecting Apama Applications to External Components 10.11.3

4 The Universal Messaging Transport Connectivity Plug-in

UsingUniversalMessaging channels lets you take advantage of someUniversalMessaging features:

Using a Universal Messaging cluster can guard against failure of an individual Universal
Messaging realm server. See the Universal Messaging documentation for more information
on clusters.

Universal Messaging provides access control lists and other security features such as client
identity verification by means of certificates and on the wire encryption. Using these features,
you can control the components that each component is allowed to send events to.

Using aUniversalMessaging channel rather than anApama channel can have a lower throughput
and higher latency. If there is a Universal Messaging channel that contexts and plug-ins send to
and that other contexts and plug-ins in the same correlator (or in different correlators) subscribe
to, all events sent on that Universal Messaging channel are delivered by means of the Universal
Messaging broker. In some cases, this might mean that events leave a correlator and are then
returned to the same correlator. In this case, using an Apama channel is faster because events
would be delivered directly to the contexts and plug-ins subscribed to that channel.

General steps for using Universal Messaging in Apama
applications
Before you perform the steps required to use Universal Messaging in an Apama application,
consider how your application uses channels. You should know which components need to
communicate with each other, which events travel outside a correlator, and which events stay in
a single correlator. Understand what channels you need and decide which channels should be
Universal Messaging channels and which, if any, should be Apama channels.

For an Apama application to use Universal Messaging, the tasks you must accomplish are:

1. Use Software AG Installer to install both Apama and the Universal Messaging client libraries
in the same Software AG installation directory.

2. Plan and implement the configuration of the Universal Messaging cluster that Apama will
use. See the Universal Messaging documentation and “Setting up Universal Messaging for
use by Apama” on page 81.

3. Use Software AG Designer to add one of the Universal Messaging connectivity bundles to
your Apama project. For detailed information, see "Adding the Universal Messaging
connectivity plug-in to a project" in Using Apama with Software AG Designer.

Note:
In addition to using Software AG Designer to add bundles, you can also do this using the
apama_project command-line tool. See "Creating andmanaging an Apama project from the
command line" in Deploying and Managing Apama Applications for more information.

4. Open the UM.properties file in your Apama project and specify the location of the Universal
Messaging realm server(s) you wish to connect to. You can optionally edit the UM.yaml file if
you need to perform more advanced configuration tasks, such as enabling authentication or
customizing the way Universal Messaging messages are mapped to Apama events. See
“Configuring the Universal Messaging connectivity plug-in” on page 82 for detailed
information.

Connecting Apama Applications to External Components 10.11.3 77

4 The Universal Messaging Transport Connectivity Plug-in

https://documentation.softwareag.com/universal_messaging/
https://documentation.softwareag.com/universal_messaging/

5. In your EPL code, subscribe to receive events delivered on Universal Messaging channels. See
"Subscribing to channels" in Developing Apama Applications.

As with all connectivity plug-ins, the EPL application is responsible for telling the system
when it is ready to start receiving events with onApplicationInitialized. See also “Sending
and receiving events with connectivity plug-ins” on page 38.

6. In your EPL code, specifyUniversalMessaging channelswhen sending events. See "Generating
events with the send statement" in Developing Apama Applications.

7. Monitor the Apama application's use of Universal Messaging. See “Monitoring Apama
application use of Universal Messaging” on page 92.

Using Universal Messaging channels instead of engine_connect
When you are usingUniversalMessaging channels in anApama application, you connectmultiple
correlators by specifying the same Universal Messaging realm when you start each correlator. By
using Universal Messaging channels, you probably do not need to use the engine_connect tool at
all.

While it is possible to configure an Apama application to use both Universal Messaging channels
and the engine_connect tool, this is not recommended.

Using Universal Messaging channels instead of configuring
IAF adapter connections

Note:
Use of Universal Messaging from the IAF is deprecated andwill be removed in a future release.
It is recommended that you now change any IAF-based adapter configurations using Universal
Messaging with a <universal-messaging> element in the configuration file to use an <apama>
element to talk directly to the correlator. See “Apama correlator configuration” on page 354.

In an Apama application, you can use Universal Messaging as the communication mechanism
between an IAF adapter and one or more correlators. If you do, then keep in mind the following:

IAF adaptersmust send events on named channels. IAF adapters cannot use the default (empty
string) channel.

A service monitor that communicates with an IAF adapter should either be run on only one
correlator, or be correctly designed to use multiple correlators. See “Considerations for using
Universal Messaging channels” on page 79.

When an IAF adapter needs to communicate with only one correlator, which is often the case for
a servicemonitor, anApama channelmight be a better choice than aUniversalMessaging channel.
However, even in this situation, it is possible andmight be preferable to use aUniversalMessaging
channel. See “Comparison of Apama channels and Universal Messaging channels” on page 75.

See also: “Configuring IAF adapters to use Universal Messaging” on page 356.

78 Connecting Apama Applications to External Components 10.11.3

4 The Universal Messaging Transport Connectivity Plug-in

Considerations for using Universal Messaging channels
When using Universal Messaging channels in an Apama application, consider the following:

Injecting EPL affects only the correlator it is injected into. Be sure to inject into each correlator
the event definition for each event that correlator processes. If a correlator sends an event on
a channel or receives an event on a channel, the correlatormust have a definition for that event.

The Universal Messaging message bus can be configured to throttle or otherwise limit events,
in which case not all events sent to a channel will be processed.

Only events can be sent or received bymeans ofUniversalMessaging. You cannot useUniversal
Messaging for EPL injections, delete requests, engine send, receive, watch or inspection utilities,
nor engine_management -r requests.

If you want events to go to only a single correlator, it is up to you to design your deployment
to accomplish that. If one or more contexts in a particular correlator are the only subscribers
to a particular Universal Messaging channel, then only that correlator receives events sent on
that channel. However, there is no automatic enforcement of this. In this situation, using the
engine_send correlator toolmight be a better choice than using aUniversalMessaging channel.

Universal Messaging channels can be configured for fixed capacity, and that is the default
configuration used if the correlator creates a Universal Messaging channel. This does mean
that if a context is sending to a channel while the same context is subscribed to that channel,
then if the output queue, channel capacity and the context's input queue are all full, the send
can deadlock, as the sendwill hold up processing the next event, but not complete if all queues
are full. Similarly, avoid a cycle of contexts and Universal Messaging channels creating a
deadlock.

When the Universal Messaging channel names are not escaped, it is possible to create or use
nested channels. In this case, the slash (/) and backslash (\) characters are treated as path
separators on both Windows and Linux.

CAUTION:
Apama treats slash (/) and backslash (\) as different characters while Universal Messaging
treats them as identical characters (Universal Messaging generally changes a slash to a
backslash). You must choose to use one of these characters in your application and
standardize on this. Use of both characters as path separators will result in undefined
behavior. In some circumstances, an error message indicating that the user is already
subscribed to a channel may be logged when both slashes and backslashes are used.

It is possible to use the Universal Messaging client libraries (available for Java, C#, C++ and
other languages) to send events to or receive events from Apama correlators and adapters.

Universal Messaging is not used by the following:

Apama client library connections.

Correlator tools such as engine_connect, engine_send and engine_receive.

Adapter-to-correlator connections defined in the <apama> element of an adapter
configuration file.

Connecting Apama Applications to External Components 10.11.3 79

4 The Universal Messaging Transport Connectivity Plug-in

While it is not recommended, it is possible to specify the name of a Universal Messaging
channelwhen youuse theseApama interfaces. Even though you specify the name of aUniversal
Messaging channel, Universal Messaging is not used. Events are delivered only to the Apama
components that they are directly sent to. This can useful for diagnostics, butmixing connection
types for a single channel is not recommended in production.

It is possible for third-party applications to use Universal Messaging channels to send events
to and receive events from Apama components.

Third-party applications sending and receiving is supported subject to having a suitable chain
definition to handle the third-party message format. This is recommended over the JMS
integration.

The name of an Apama channel can contain any UTF-8 character. However, the name of a
Universal Messaging channel is limited to the following character set:

0-9

a-z

A-Z

/ (slash, used as path separator when escaping is disabled; do not use both slash and backslash
characters within the same application as this will result in undefined behavior - see also the
above information)

\ (backslash, used as path separator when escaping is disabled)

#

_ (underscore)

- (hyphen)

Consequently, some escaping is required if UniversalMessaging needs toworkwith anApama
channel name that contains characters that are not supported in Universal Messaging channel
names.

Whenwriting EPL, youdo not need to be concerned about escape characters in channel names.
Apama takes care of this for you.

When interfacing directly with Universal Messaging, for example in a Universal Messaging
client application for Java, you will need to consider escaping.

When creating Universal Messaging channels to be used by an Apama application, youmight
need to consider escaping. For example, you might already be using Apama channels whose
names contain characters that are unsupported in Universal Messaging channel names. To
use those same channelswithUniversalMessaging, you need to create the channels inUniversal
Messaging, and when you do, you must escape the unsupported characters.

The escape sequence is the hash (#) symbol, followed by the UTF-8 character number in
hexadecimal (lowercase) which again is followed by the hash (#) symbol. For example, the
following sequence would be used to escape a period in a channel name:

80 Connecting Apama Applications to External Components 10.11.3

4 The Universal Messaging Transport Connectivity Plug-in

#2e#

Suppose that in Universal Messaging you want to create a channel whose name in Apama is
My.Channel. In Universal Messaging, you need to create a channel with the following name:

My#2e#Channel

Universal Messaging supports different protocols. Lower latency can be achieved by using
the shm (Shared Memory) protocol if both the correlator and the broker are running on the
same host. See the Universal Messaging documentation for information on how to configure
the SHM driver.

Note that the SHM driver keeps a CPU core busy for each end of a connection as it uses spin
loops rather than network I/O, which means that two CPU cores are used for each session. As
a result, it is recommended to carefully consider and experiment with how many sessions
should be used. The default number of sessions is 8, which will typically reduce throughput
as it will use too much CPU for Universal Messaging connections.

Setting up Universal Messaging for use by Apama
For Apama to use the Universal Messaging message bus, there are some required Universal
Messaging tasks. These steps will be familiar to experienced Universal Messaging users.

Plan and implement the configuration of the Universal Messaging cluster that Apama will use.
The recommendation is to have at least three Universal Messaging realms in a cluster because this
supportsUniversalMessaging quorum rules for ensuring that there is nevermore than onemaster
in a cluster. However, if you can have only two Universal Messaging realms, you can use the
isPrime flag to correctly configure a two-realm cluster. For details about configuring a Universal
Messaging cluster, see the topics in the Universal Messaging documentation that describe the
following:

Quorum

Clusters with Sites, which describes an exception to the quorum rule.

To set up Universal Messaging for use by Apama, do the following for each Universal Messaging
realm to be used by Apama:

1. Use the Software AG Installer to install Universal Messaging. Make sure to select the option
to install the Universal Messaging client libraries.

The Universal Messaging server can be installed on any machine (not necessarily on the same
machine as Apama), but you must ensure that the Universal Messaging client libraries are
present in the same SoftwareAG installation directory asApama, as these libraries are required
by the Universal Messaging transport connectivity plug-in.

Note:
If you are using JMS or Digital Event Services to access Universal Messaging, installing the
client libraries is not required.

2. Start a Universal Messaging server.

Connecting Apama Applications to External Components 10.11.3 81

4 The Universal Messaging Transport Connectivity Plug-in

https://documentation.softwareag.com/universal_messaging/
https://documentation.softwareag.com/universal_messaging/

3. Use Universal Messaging's Enterprise Manager or Universal Messaging client APIs to set the
access control lists of the Universal Messaging server to allow the user that the correlator is
running on. See the Universal Messaging documentation for details.

4. By default, Apama automatically creates channels on the Universal Messaging server (that is,
the configuration option missingChannelMode is set to create; see “Configuring the connection
to Universal Messaging (dynamicChainManagers)” on page 83).

In production, it is usually better to change missingChannelMode to error and then add the
channels that Apama will use explicitly using Universal Messaging's Enterprise Manager (or
the client APIs). In this case, configure the following Universal Messaging channel attributes.
Together, these attributes provide behavior similar to that provided by using the Apama
correlator tool engine_connect.

Set Channel Capacity to 20000 or some suitable number, at least 2000 events. A number
higher than 20,000 would allow larger bursts of events to be processed before applying
flow control but would not affect overall throughput.

Select Use JMS engine. See also the information on engine differences in the Universal
Messaging documentation.

Set Honour Capacity when channel is full to true.

These channel attributes provide automatic flow control. If a receiver is slow, then event
publishers block until the receivers have consumed events.

Other channel attributes are allowed.However, it is possible to set UniversalMessaging channel
attributes in away thatmight prevent all events from being delivered to all intended receivers,
which includes correlators. For example, Universal Messaging can be configured to conflate
or throttle the number of events going through a channel, which might cause some events to
not be delivered. Remember that delivery of events is subject to the configuration of the
Universal Messaging channel. Consult the Universal Messaging documentation for more
details before you set channel attributes that are different from the recommended attributes.

Configuring the Universal Messaging connectivity
plug-in
When you have added the Universal Messaging connectivity plug-in to your Apama project in
Software AG Designer (see also “General steps for using Universal Messaging in Apama
applications” on page 77), you can edit the YAML configuration file that comes with the plug-in.

The YAML file is configured to do the following:

1. Load the Universal Messaging transport from the UMConnectivity library.

2. Under dynamicChainManagers, configure one Universal Messaging chain manager to connect
to different Universal Messaging realms. Keep in mind that you can have only one chain
manager here.

3. Configure one or more dynamicChains to handle transforming messages from Universal
Messaging into the correlator.

82 Connecting Apama Applications to External Components 10.11.3

4 The Universal Messaging Transport Connectivity Plug-in

Detailed information for this and much more is given in the topics below.

You can have different dynamicChains processing messages on different channels in different
formats.

Connection-related configuration is specified in the managerConfig stanza on the
dynamicChainManagers instance, including the rnames connection string for Universal Messaging.

Per-channel configuration of how to parse received messages is configured via the individual
dynamicChains.

Selection ofwhich chain amanager is to use for a given channel name is done via a channelPattern
stanza on the UMTransport for each chain.

By default, the UM chainmanager listens for subscribe and send-to requests in your EPL. It subscribes
to channels with a specific prefix in Apama (by default, this is um:) and connect that to the
corresponding Universal Messaging channel without the prefix. Therefore, EPL subscribing or
sending to um:channelNamewill subscribe or send to theUniversalMessaging channel channelName.
The prefix and whether it is included on Universal Messaging can be configured via the
managerConfig.

For more information on YAML configuration files, see “Using Connectivity Plug-ins” on page 23
and "Configuring the correlator" in Deploying and Managing Apama Applications.

Loading the Universal Messaging transport
The Universal Messaging transport is loaded with the following connectivityPlugins stanza:
connectivityPlugins:
UMTransport:

libraryName: UMConnectivity
class: UMTransport

Configuring the connection to Universal Messaging
(dynamicChainManagers)
The Universal Messaging dynamic chain manager monitors channels that are subscribed to or
sent-to within the correlator and, as per its configuration, connects these to Universal Messaging
channels as needed. This is where you specify how to connect to Universal Messaging. When the
dynamic chain manager identifies a channel that should be connected to a Universal Messaging
channel, it will create a chain using one of the templates in the dynamicChains section of the YAML
configuration (see also “ Configuring message transformations (dynamicChains)” on page 87).

One UMdynamic chainmanager is createdunder dynamicChainManagerswhich specifies theUniversal
Messaging realm or cluster of realms you are connecting to. The managerConfig stanza contains
all of the configuration for connecting to that Universal Messaging realm.
dynamicChainManagers:
UM:

transport: UMTransport
managerConfig:

rnames: nsp://127.0.0.1:9000

Connecting Apama Applications to External Components 10.11.3 83

4 The Universal Messaging Transport Connectivity Plug-in

session:
poolSize: 8

certificateAuthorityFile: /mypath/my_UM_certificate
authentication:
username: me
certificateFile: /mypath/my_client_certificate
certificatePassword: mycertificatepassword

channel:
prefix: "um:"
missingChannelMode: create
escapeNamesOnUM: true
includePrefixOnUM: false

createChannelPermissions:
user@host:

- Manage ACL
- Full

"*@*":
- Publish
- Subscribe
- Last EID

Everyone:
- Purge

The following table describes the options that can be used in the managerConfig section:

DescriptionOption

Required. The Universal Messaging connection string of
realm names to connect to.

rnames

You can specify one or more Universal Messaging realm
names (RNAME) separated by commas or semicolons.

Commas indicate that you want the correlator to try to
connect to the Universal Messaging realms in the order in
which you specify them here. For example, if you have a
preferred local server you could specify its associated realm
name first and then use commas as separators between
specifications of other realm names, which would be
connected to if the local server is down.

Semicolons indicate that the correlator can try to connect
to the specified Universal Messaging realms in any order.
For example, use semicolons when you have a cluster of
equally powered machines in the same location and you
want to load balance a large number of clients.

You can specifymultiple Universal Messaging realms only
when they are connected in a single Universal Messaging
cluster. That is, all realm names you specify must belong
to the same Universal Messaging cluster. Since channels
are shared across a cluster, connecting to more than one
Universal Messaging realm lets you take advantage of
Universal Messaging's failover capability.

84 Connecting Apama Applications to External Components 10.11.3

4 The Universal Messaging Transport Connectivity Plug-in

DescriptionOption

For additional information on communication protocols
and realm names, and on clusters, see the Universal
Messaging documentation.

Default value: none.

The number of sessions (connections) to create to the
Universal Messaging realm. Either a number of sessions or

session/poolSize

a string of the form /Nwhich indicates a divisor applied to
the number of CPUs to obtain the number of sessions.
Channels are allocated to sessions in a round-robin style.

Default value: 8.

The path to a CA certificate for the Universal Messaging
realm. This is used by the Apama to confirm the identity
of the Universal Messaging realm server.

certificateAuthorityFile

Default value: none.

The username that is to be used to connect to the Universal
Messaging realm. The default is the user which the
correlator is running as.

authentication/username

Default value: none.

The path to a certificate that is used by the Universal
Messaging realm server to authenticate this client.

authentication/certificateFile

Default value: none.

The password for the certificate.authentication/certificatePassword

Default value: none.

A prefix for the channel. Only channelswith this prefixwill
be considered asUniversalMessaging channels. If the prefix

channel/prefix

ends with a colon (:), it needs to be enclosed in quotation
marks (see also "Using YAML configuration files" in
Deploying and Managing Apama Applications).

Default value: "um:".

If set to false, the channel prefix is stripped from the
Apama channel name before it is looked up on Universal
Messaging.

channel/includePrefixOnUM

Default value: false.

If set to true, non-alphanumeric characters in the Apama
channel name are escaped onUniversalMessaging. Set this

channel/escapeNamesOnUM

Connecting Apama Applications to External Components 10.11.3 85

4 The Universal Messaging Transport Connectivity Plug-in

https://documentation.softwareag.com/universal_messaging/
https://documentation.softwareag.com/universal_messaging/

DescriptionOption

to false if you want to use the slash (/) for hierarchical
channels on Universal Messaging.

Default value: true.

Defines the behavior when subscribing to channels which
do not exist. You can define one of the following options:

channel/missingChannelMode

error - Print an error to the correlator log file. The
channel remains only accessible within the correlator.

ignore - Silently ignore the failure and therefore do not
print an error to the correlator log. The channel remains
only accessible within the correlator.

create - Create the channel on theUniversalMessaging
realm, then subscribe/send to it. See also “Subscribing
to automatically created Universal Messaging
channels” on page 89.

Default value: create.

Defines the ACL (access control list) permissions for
automatically created channels in the following format:

createChannelPermissions

client:
- permission1
- permission2
- ...

The client can be either a subject (of the format user@host)
or a group. Universal Messaging supports the *wildcard
for representing all users/hosts. You can specify the
following permissions:

Manage ACL

Full

Publish

Subscribe

Purge

Last EID

For additional information on subject, group, wildcards
and permission ACLs, see the Universal Messaging
documentation.

Default:

86 Connecting Apama Applications to External Components 10.11.3

4 The Universal Messaging Transport Connectivity Plug-in

DescriptionOption
creating-user@*:

- Subscribe
- Publish
- Last EID

Note:
Apama clients require Last EID permission in addition
to Subscribe permission for a client to subscribe to a
channel.

Setting channel permissions correctly is important to protect
the security of your application, and also to protect any
personal data included in the messages. For more
information, see "Protecting Personal Data in Apama
Applications" in Developing Apama Applications.

Configuring message transformations (dynamicChains)
dynamicChains contains templates of chains. The Universal Messaging manager will pick a chain
template that ends with the UMTransport plug-in, and use that configuration. The manager also
provides configuration from the channel which the chain can use with @{varname} substitutions
(see “ Using dynamic replacement variables” on page 88). The manager uses the channelPattern
property of the UMTransport configuration to decide which chain template should be used for a
given channel.

With either the apama.eventMap or apama.eventString host plug-ins, we recommend use of the
suppressLoopback configuration property to avoid messages which are sent to that channel being
delivered internally as well as being sent to and received from Universal Messaging. We also
recommend setting the description and remoteAddress properties in order to improve logging
and debugging. See “Host plug-ins and configuration” on page 30 for more information.

The following chain sends and receives events with the members of the event being set in the
nEventProperties of the Universal Messaging events and an empty payload.
dynamicChains:
UMChain:

- apama.eventMap:
suppressLoopback: true
description: "@{um.rnames}"
remoteAddress: "@{um.rnames}"

- UMTransport:
setTypeFromTag: true
channelPattern: ".*"

The following options can be used with UMTransport:

Connecting Apama Applications to External Components 10.11.3 87

4 The Universal Messaging Transport Connectivity Plug-in

DescriptionOption

If set to true, the UniversalMessagingmessage tag is translated
to the sag.typemetadata field, if the Universal Messaging tag
is present.

setTypeFromTag

If desired, the Mapper codec (see “The Mapper codec
connectivity plug-in” on page 217) can be used to set a different
value for metadata.sag.typewhen sending messages towards
theUniversalMessaging transport in order to use a string other
than the Apama event type for the Universal Messaging tag.
When receiving messages from the Universal Messaging
transport, the Classifier codec (see “The Classifier codec
connectivity plug-in” on page 216) can be used to set theApama
event type to be used if the incoming Universal Messaging
messages do not specify an Apama event type in their “tag”.

For performance-critical applications where the event type is
known or can be set in the chain, we recommend setting this
option to false.

Default value: true.

Required. A regular expression that is used to select which
chain is used for which channel.

channelPattern

Only one chain definition may match any channel, except for
the “fallback” definition with the channel pattern ".*", which
will be used if no other patterns match.

Default value: none.

Using dynamic replacement variables
The UMTransport provides the following dynamic replacement variables which can be used with
the @{varname} replacement syntax:

DescriptionVariable

The name of the Universal Messaging channel.um.channelName

The address of the Universal Messaging realm.um.rnames

The maximum capacity of the Universal Messaging channel.um.channelCapacity

For example, for using all channels as mapping directly to nEventProperties:
UMMessagePropertiesChain:
- apama.eventMap:

suppressLoopback: true
description: "@{um.rnames}"

88 Connecting Apama Applications to External Components 10.11.3

4 The Universal Messaging Transport Connectivity Plug-in

remoteAddress: "@{um.rnames}"
- UMTransport:

channelPattern: ".*"

Subscribing to automatically created Universal Messaging
channels
By default, the configuration option missingChannelMode is set to create so that a Universal
Messaging channel can be automatically created if it does not already exist when an Apama
application needs to use it. See also “Configuring the connection to Universal Messaging
(dynamicChainManagers)” on page 83.

When aUniversalMessaging channel is automatically created,which is helpful for getting started,
it has the attributes described in “Setting up Universal Messaging for use by Apama” on page 81.
If you want a Universal Messaging channel to have any other attributes, then you must create the
channel in Universal Messaging before any Apama component sends to or subscribes to the
channel.

In production, it is usually better to change missingChannelMode to error and to configure the
channels explicitly as described in “Setting upUniversalMessaging for use byApama” on page 81.

You can specify the ACL (access control list) permissions for the channel being created in a YAML
configuration file using the createChannelPermissions option. See “Configuring the connection
to Universal Messaging (dynamicChainManagers)” on page 83.

Channel lookup caching
After Apama looks up a channel name to determine whether it is a Universal Messaging channel,
Apama caches the result and does not look it up again. Consequently, the following situation is
possible:

1. You use Universal Messaging interfaces to create channels.

2. You start a correlator with missingChannelMode set to ignore.

3. Apama looks up, for example, channelA and determines that it is not a Universal Messaging
channel.

4. You use Universal Messaging interfaces to create, for example, channelA.

For Apama to recognize channelA as a Universal Messaging channel, you must either restart the
correlator or issue a flushChannelCache request using the engine_management tool (see also "Shutting
down and managing components" in Deploying and Managing Apama Applications):
engine_management -r flushChannelCache

This operation may take a long time since it verifies the existence of every channel subscribed to
in the correlator on Universal Messaging. Therefore, we recommend that you ensure all your
channels have been created on Universal Messaging before starting your Apama application.

Connecting Apama Applications to External Components 10.11.3 89

4 The Universal Messaging Transport Connectivity Plug-in

Supported payloads
The Universal Messaging transport supports different types of Apama message payload:

Binary payloads (Java byte[] or C++ buffer_t) . Apama messages with binary payloads
are mapped to the data payload of a Universal Messaging message. Optionally, Universal
Messaging message properties/headers (nEventProperties) may be mapped using metadata
values in string form with the prefix um.properties. You can also map all of the Universal
Messaging message properties to an EPL dictionary with a Mapper codec rule that moves
metadata.um.properties in its entirety; see also “The Mapper codec connectivity plug-in” on
page 217. If you wish to put a string into the Universal Messaging message data payload, use
the String codec to convert it into binary form (asUTF-8); see also “The String codec connectivity
plug-in” on page 210.

Map payloads (Java Map or C++ map_t) . Apama messages with a map payload are mapped
to theUniversalMessagingmessage properties/headers (nEventProperties), and theUniversal
Messaging message data payload is empty.

If you are sending and receiving using the eventMap host plug-in (see also “Translating EPL events
using the apama.eventMap host plug-in” on page 32), you probably want to make use of the
Mapper and Classifier codecs (see “Codec Connectivity Plug-ins” on page 209), unless the Apama
event type name is stored in the “tag” of the Universal Messagingmessages. Typically, the Apama
event format does not match exactly to the format you want in the nEventProperties, and the
Mapper codec allows you to fix that.

When setting nEventProperties either from themappayload or via um.propertiesmetadata values,
the following EPL types are unsupported and sending events toUniversalMessagingwill therefore
fail:

dictionary<> typeswith keyswhich are notApamaprimitives (that is, anything except integer,
boolean, decimal, float, string). For example, dictionary<Sequence<some type>, String> is
not supported, but dictionary<decimal, <sometype>> is supported.

Apama decimal type and dictionary<> keys are stringifiedwhen sending the events. That also
means that sequence <decimal> is sent as a sequence of strings.

Sequenceswithin sequences . For example, sequence<sequence<any type>>. Note that sequence
<Apama Event> or sequence <dictionary<some primitive, any type>> are supported.

The binary payload may represent a string. If this is a case, then the binary payload must be
converted to a string payload before further processing can happen as a string. To do this, use the
String codec. This converts binary payloads to string payloads for hostward messages and string
payloads to binary payloads for transportward messages. The String codec should be the last
codec in the chain. See “The String codec connectivity plug-in” on page 210 for detailed information.

You can also use other codecs such as the JSON codec (see “Codec Connectivity Plug-ins” on
page 209 for more information). For example:
dynamicChains:
UMJsonChain:

- apama.eventMap:
suppressLoopback: true

90 Connecting Apama Applications to External Components 10.11.3

4 The Universal Messaging Transport Connectivity Plug-in

description: "@{um.rnames}"
remoteAddress: "@{um.rnames}"

- jsonCodec
- stringCodec
- UMTransport:

channelPattern: ".*"

EPL and Universal Messaging channels
In an Apama application that is configured to use Universal Messaging, you write EPL code to
subscribe to channels and to send events to channels as you usually do. The only difference is that
you cannot specify the default channel (the empty string) when you want to use a Universal
Messaging channel. You must specify a Universal Messaging channel name to use Universal
Messaging.

As with all connectivity plug-ins, the EPL application is responsible for telling the system when
it is ready to start receiving eventswith onApplicationInitialized. See also “Sending and receiving
events with connectivity plug-ins” on page 38.

Amonitor that subscribes to aUniversalMessaging channel causes its containing context to receive
events delivered to that channel. There is nothing special you need to add to your EPL code.

Using Universal Messaging channels makes it easier to scale an application across multiple
correlators becauseUniversalMessaging channels can automatically connect parts of the application
as required. If you use the EPL integer.incrementCounter("UM")method, remember that the return
value is unique for only a single correlator. If a globally unique number is required, you can
concatenate the result of integer.incrementCounter("UM")with the correlator's physical ID. Obtain
the physical ID fromApama's Management interface with a call to the getComponentPhysicalId()
method. For further information, see "Using the Management interface" in Developing Apama
Applications.

Using Universal Messaging connectivity from EPL
In EPL, in order to receive events from a Universal Messaging channel, you just need to subscribe
to a channel with the appropriate prefix:
on all EventTypeOnUM() { ... }
monitor.subscribe("um:UMChannelName");

This creates a chain with a channel pattern matching um:UMChannelName and subscribe to
UMChannelName on the connected realm. Events from that channel are delivered to the context after
being parsed by the chain.

To send to a Universal Messaging channel, you just need to use the send...to statement to deliver
an event to that channel name:
send EventTypeOnUM() to "um:UMChannelName";

This will use the same chain definition as above to deliver the mapped event to the Universal
Messaging channel UMChannelName.

Connecting Apama Applications to External Components 10.11.3 91

4 The Universal Messaging Transport Connectivity Plug-in

The samples/connectivity_plugin/application/genericsendreceive directory of your Apama
installation includes a simple sample which provides an easy way to get started with sending and
receiving messages to or from any connectivity plug-in. For more information, see the README.txt
file in the above directory and “Sending and receiving events with connectivity plug-ins” on
page 38.

Monitoring Apama application use of Universal
Messaging
You can use the Universal Messaging Enterprise Manager or Universal Messaging APIs to find
out about the following:

Which correlators are subscribed to which Universal Messaging channels.

The number of events flowing through a Universal Messaging channel.

The contents of the events going through a Universal Messaging channel.

See the Universal Messaging documentation for more information on the Enterprise Manager.

To monitor and manage Apama components, you must use Apama tools and APIs.

92 Connecting Apama Applications to External Components 10.11.3

4 The Universal Messaging Transport Connectivity Plug-in

https://documentation.softwareag.com/universal_messaging/

5 The MQTT Transport Connectivity Plug-in

■ About the MQTT transport ... 94

■ Using MQTT connectivity from EPL ... 94

■ Loading the MQTT transport .. 95

■ Configuring the connection to MQTT ... 95

■ Mapping events between MQTT messages and EPL .. 97

■ Payload for the MQTT message ... 98

■ Wildcard topic subscriptions ... 98

■ Metadata for the MQTT message .. 98

■ Restrictions ... 99

Connecting Apama Applications to External Components 10.11.3 93

About the MQTT transport
MQTT is a publish/subscribe-based "lightweight" message protocol designed for communication
between constrained devices, for example, devices with limited network bandwidth or unreliable
networks. See http://mqtt.org/ for detailed information.

Note:
While it is possible to use MQTT to communicate between Apama and Cumulocity IoT, we
recommend using the Cumulocity IoT transport connectivity plug-in provided with Apama.
See “TheCumulocity IoT Transport Connectivity Plug-in” on page 163 for detailed information.

Apama provides a connectivity plug-in, the MQTT transport, which can be used to communicate
between the correlator and an MQTT broker, where the MQTT broker uses topics to filter the
messages. MQTT messages can be transformed to and from Apama events by listening for and
sending events to channels such as prefix:topic (where the prefix is configurable).

The MQTT transport automatically reconnects in case of a connection failure. The transport will
retry sending anymessages sent after the connection has been lostwhen reconnection has succeeded

You configure theMQTT connectivity plug-in by editing the files that comewith theMQTT bundle.
The properties file defines the substitution variables that are used in the YAML configuration file
which also comes with the bundle. See "Adding the MQTT connectivity plug-in to a project" in
Using Apama with Software AG Designer for further information.

Note:
In addition to using Software AG Designer to add bundles, you can also do this using the
apama_project command-line tool. See "Creating and managing an Apama project from the
command line" in Deploying and Managing Apama Applications for more information.

This transport provides a dynamic chain manager which creates chains automatically when EPL
subscribes or sends to a correlator channel with the configured prefix, typically mqtt:. For the
MQTT transport, theremust be exactly one chain definition provided in the dynamicChains section
of the YAML configuration file.

For more information on YAML configuration files, see “Using Connectivity Plug-ins” on page 23
and especially “Configuration file for connectivity plug-ins” on page 26.

Note:
The MQTT connectivity plug-in does not support reliable messaging.

Using MQTT connectivity from EPL
The MQTT transport can either subscribe to or send to a particular topic, depending on whether
your EPL is subscribing to or sending to a particular channel.

In EPL, in order to receive an MQTT message, you just need to subscribe to an MQTT topic with
the appropriate prefix. For example:
monitor.subscribe("mqtt:topic_a");

94 Connecting Apama Applications to External Components 10.11.3

5 The MQTT Transport Connectivity Plug-in

http://mqtt.org/

on all A() as a {
print a.toString();

}

To send an Apama event to the MQTT broker, you just need to use the send...to statement to
deliver the event to the MQTT topic. For example:
send A("hello world") to "mqtt:topic_a";

As with all connectivity plug-ins, the EPL application is responsible for telling the system when
it is ready to start receiving eventswith onApplicationInitialized. See also “Sending and receiving
events with connectivity plug-ins” on page 38.

The samples/connectivity_plugin/application/genericsendreceive directory of your Apama
installation includes a simple sample which provides an easy way to get started with sending and
receiving messages to or from any connectivity plug-in. For more information, see the README.txt
file in the above directory and “Sending and receiving events with connectivity plug-ins” on
page 38.

Loading the MQTT transport
The MQTT transport is loaded with the following connectivityPlugins stanza:
mqttTransport:
libraryName: connectivity-mqtt
class: MQTTTransport

Configuring the connection to MQTT
You configure one or more dynamicChainManagers to connect to different MQTT brokers. For
example:
dynamicChainManagers:
mqttManager:

transport: mqttTransport
managerConfig:

brokerURL: tcp://localhost:1883

Connection-related configuration is specified in the managerConfig stanza on the
dynamicChainManagers instance. The following configuration options are available for managerConfig:

DescriptionConfiguration option

URL for the MQTT broker.brokerURL

For example, you can use the following URL for
non-TLS connections:

tcp://localhost:1883

To enable SSL/TLS, you simply indicate this in the
broker URL. For example:

Connecting Apama Applications to External Components 10.11.3 95

5 The MQTT Transport Connectivity Plug-in

DescriptionConfiguration option

ssl://localhost:8883

Type: string.

Prefix for dynamicmapping. If the prefix endswith
a colon (:), it needs to be enclosed in quotation

channelPrefix

marks (see also "Using YAML configuration files"
in Deploying and Managing Apama Applications).

When the channel is mapped to an MQTT topic,
the prefix is not used. For example, if the prefix is
"mqtt:", then the channel mqtt:test/amaps to the
MQTT topic test/a.

Type: string.

Default: "mqtt:".

Optional. By default, a random client identifier is
generated during startup. If you do not want to

mqttClientId

use this random identifier, you can set this option
to configure your own client identifier. This can be
any alphanumerical value.

Type: string.

Starts a clean session with the MQTT broker. Set
this to false if the previous session is to be

cleanSession

resumed. You should only do this in conjunction
with setting the mqttClientId.

Type: bool.

Default: true.

Used with TLS. By default, connections to
unrecognized certificates are terminated. Set this

acceptUnrecognizedCertificates

to true if non-validated server certificates are to
be accepted.

Type: bool.

Default: false.

Used with TLS. By default, server certifications
signed by all standard Certificate Authorities are

certificateAuthorityFile

validated. Optionally, you can set this option to
provide a path to a CA certificate file in PEM
format to authenticate the host with.

Type: string.

96 Connecting Apama Applications to External Components 10.11.3

5 The MQTT Transport Connectivity Plug-in

DescriptionConfiguration option

User name for authentication.authentication/username

Type: string.

Password for authentication.authentication/password

Type: string.

Used by TLS. Optionally, you can set this option
to provide a path to a CA certificate file in PEM
format to authenticate the client with.

authentication/certificateFile

Type: string.

Used by TLS. Optional password used to decrypt
the client private key file, if encrypted.

authentication/certificatePassword

Type: string.

Used by TLS. Optional path to a PEM file
containing the private key, if not already included
in the certificate file.

authentication/privateKeyFile

Type: string.

Important:
If you provide a password for authentication via the configuration file, you must ensure to
protect the configuration file against any unauthorized access, since the password will be
readable in plain text.

Mapping events between MQTT messages and EPL
You can use the apama.eventMap host plug-in in a dynamic chain to translate events to or from
nested messages like JSON data. You configure exactly one dynamicChains section to handle
transforming messages from the MQTT broker into the correlator, and vice versa.

The following description shows how to configure the genericsendreceive sample to send/receive
data to/from anMQTT broker. The advantage of this sample is that all required EPL code is already
available (see also “Writing EPL” on page 21). The sample is located in the samples/connectivity_
plugin/application/genericsendreceive directory of yourApama installation. To use the sample,
do the following:

1. Import the sample into Software AG Designer as an existing project (make sure to create a
copy).

2. Add the MQTT connectivity plug-in to that project (see also "Adding the MQTT connectivity
plug-in to a project" in Using Apama with Software AG Designer) and edit the MQTT.yaml file as
per your application.

Connecting Apama Applications to External Components 10.11.3 97

5 The MQTT Transport Connectivity Plug-in

3. Configure both the input and output channels to apamax by sending the ConfigureSample event
(in order to send continuous data, keepSendingmust be set to true).

4. Send the AppReady event to start the application.

We recommend use of the suppressLoopback configuration property to prevent undesirable
behavior. See “Host plug-ins and configuration” on page 30 for further information.

Payload for the MQTT message
As with all other transports, the translation between EPL events and MQTT payloads is based on
the choice of host plug-in and codecs. See “Host plug-ins and configuration” on page 30 and
“Codec Connectivity Plug-ins” on page 209 for further information.

The payload for the MQTT message is a byte array. Therefore, the String codec should usually be
used to convert a byte[] (Java) or buffer_t (C++) type payload into a hostward string event. The
same String codec can also be used to convert a string event to a transportward message with a
byte[] or buffer_t type.

Wildcard topic subscriptions
MQTT supports a hierarchical topic namespace and allows you to subscribe to every topic in a
namespace using a wildcard symbol such as #. Any MQTT messages that are sent to the broker
and that satisfy the topic namespace are sent to the correlator.

A potential result of this may be that a single MQTT message that is sent to the broker is received
more than once by the correlator. For example, assume that Apama subscribes to both of the
following channels:
"mqtt:SENSOR/#"
"mqtt:SENSOR/1"

If a single MQTT message is sent to the broker using the topic name SENSOR/1, then this MQTT
message will be received twice by the correlator. You should be aware of such situations and write
your EPL accordingly to handle this.

Metadata for the MQTT message
Messages coming from the transport have useful pieces of information inserted into theirmetadata.
This information is stored as a map associated with the mqtt key. This map contains the following
information:

DescriptionField

Contains the full name of the topic from which the
message originated. This allows you to differentiate

metadata.mqtt.topic

between messages coming from different sources in the
case of a transport subscribed with a wildcard.

98 Connecting Apama Applications to External Components 10.11.3

5 The MQTT Transport Connectivity Plug-in

Restrictions
Not all MQTT features are supported by the MQTT transport. The following features are not
supported:

Reliable messaging, that is, session persistency and QoS (Quality of Service) level greater than
0.

Retained messages.

Last will and testament options.

Connecting Apama Applications to External Components 10.11.3 99

5 The MQTT Transport Connectivity Plug-in

100 Connecting Apama Applications to External Components 10.11.3

5 The MQTT Transport Connectivity Plug-in

6 The Digital Event Services Transport Connectivity

Plug-in

■ About the Digital Event Services transport ... 102

■ Using Digital Event Services connectivity from EPL .. 103

■ Reliable messaging with Digital Event Services ... 104

Connecting Apama Applications to External Components 10.11.3 101

About the Digital Event Services transport
Software AG Digital Event Services is a messaging system for communicating between different
SoftwareAGproducts using events. Digital Event Services allows event definitions to be converted
between a product's internal event or document definition to digital event types and vice versa,
so participating products can share a set of event definitions.When youdevelopApama applications
that make use of Digital Event Services, the translation between digital event type definitions and
Apama event types is done automatically. When digital events are sent to or received fromDigital
Event Services, they are converted to or from Apama events.

For details of the event mapping, see the .mon source file that is generated into the autogenerated
node of your Apama project in Software AG Designer. Note that digital event types that contain
nested events (or sequences of nested events) are converted to Apama event definitions that have
an optional member (or sequence of optionals) for that event type. See the description of the
optional type in the API Reference for EPL (ApamaDoc) for more information. When digital events
are converted to Apama events, fields of other types with no value set are set to the default value
for that type (see also "Default values for types" in Developing Apama Applications).

To use digital event types in your Apama application, proceed as follows:

1. Use Software AG Installer to install Digital Event Services. See Installing Software AG Products
for more information.

2. Configure Digital Event Services as described in Using Digital Event Services to Communicate
between Software AG Products. This guide also explains how to use SSL with Digital Event
Services.

3. Use Software AG Designer to add the Digital Event Services connectivity bundle to your
Apama project. For detailed information, see "Using the Digital Event Services connectivity
bundle" in Using Apama with Software AG Designer.

Note:
In addition to using Software AG Designer to add bundles, you can also do this using the
apama_project command-line tool. See "Creating andmanaging an Apama project from the
command line" in Deploying and Managing Apama Applications for more information.

4. Use the Digital Event Types editor to turn digital event types into Apama event types and
existing Apama event types into digital event types. Apama event types that correspond to
digital event types can be used just like ordinary Apama events. You can create digital events,
create event expressions for them, set and get their contents, pass them around internally
between monitors and contexts, and much more. See the above-mentioned topic for more
information.

5. This transport provides a dynamic chain manager which creates chains automatically when
EPL subscribes or sends to a correlator channel with a name corresponding to the .CHANNEL
constant on a Digital Event Services event. For this transport, there is no need to customize
the chain configuration in the YAML configuration file in any way.

For more information on YAML configuration files, see “Using Connectivity Plug-ins” on
page 23 and especially “Configuration file for connectivity plug-ins” on page 26.

102 Connecting Apama Applications to External Components 10.11.3

6 The Digital Event Services Transport Connectivity Plug-in

6. Edit the DigitalEventServices.properties file to configure the Digital Event Services
connectivity plug-in which defines the Apama connection to Digital Event Services. See the
above-mentioned topic for more information.

Using Digital Event Services connectivity from EPL
As with all connectivity plug-ins, the EPL application is responsible for telling the system when
it is ready to start receiving eventswith onApplicationInitialized. See also “Sending and receiving
events with connectivity plug-ins” on page 38.

Each Digital Event Services event type maps to its own dedicated Apama channel. The channel
name is accessed via the static CHANNEL constant on the EPL type. With CHANNEL, you can send,
subscribe and unsubscribe in the same way as any other Apama channel.

For example, you have a digital event type called pkg1.pkg2.MyEvent, with fields anInteger and
aString on it. If you select this type in Software AG Designer, you are able to write EPL such as
the following:
using com.softwareag.connectivity.ConnectivityPlugins;
using pkg1.pkg2.MyEvent;
...

ConnectivityPlugins.onApplicationInitialized();
monitor.subscribe(MyEvent.CHANNEL); // This context will now receive digital

// events of type 'pkg1.pkg2.MyEvent'

on all MyEvent() as e {
print "Got an event from DES: " + e.toString();

}

MyEvent e2 := new MyEvent;
e2.anInteger := 100;
e2.aString := "Hello world!";
send e2 to MyEvent.CHANNEL; // Sends this event out to Digital Event Services

There is one thing about digital events that is totally different from Apama events. Digital events
of different types are not guaranteed to be received by Digital Event Services in the same order
as they were sent. When you are sending Apama events as shown in the following example, then
it is guaranteed that the destination context (ctx) can see the A and B events in the same order as
they were sent.
send A(1) to ctx;
send B(1) to ctx;
send A(2) to ctx;
send B(2) to ctx;

If you are sending digital events as shown in the example below, any other product (or even
Apama) that is receiving these events from Digital Event Services is guaranteed to see A(2) after
A(1), and B(2) after B(1). These A and B events, however, might (or might not) be interleaved
differently.
send A(1) to A.CHANNEL;
send B(1) to B.CHANNEL;
send A(2) to A.CHANNEL;

Connecting Apama Applications to External Components 10.11.3 103

6 The Digital Event Services Transport Connectivity Plug-in

send B(2) to B.CHANNEL;

If you want to deploy or export an Apama application which uses digital events (for example,
using Command Central or an Ant script) to another machine (for example, from development to
production), keep in mind that you also have to deploy the digital event type repository from one
machine to the other. The same type repository on which you have developed your application
needs to be available in all the places in which you run your application. For more information,
see Using Digital Event Services to Communicate between Software AG Products.

Reliable messaging with Digital Event Services
Digital Event Services offers reliability with only a couple of small requirements:

Reliable sending.The deliverymode of theDigital Event Services event typemust be persistent.
This allows you to perform flush operations for that event type.

Reliable receiving.Thedeliverymode of theDigital Event Services event typemust be persistent.
In addition, a subscriberIdmust be set in the configuration file. This requires that you perform
acknowledgments for events of that type.

For detailed information on how to configure the delivery mode, see Using Digital Event Services
to Communicate between Software AG Products.

See the properties file DigitalEventServices.properties for information on the subscriberId and
other configuration options. Formore detailed information on using reliablemessaging in general,
see “Using reliable transports” on page 33.

Shared durable subscribers

TheDigital Event Services transportmakes use of shared durable subscribers for reliable receiving.
When a single correlator is connected with a particular subscriberId, the correlator will receive
and acknowledge events. Events are resent after a failure once the failed component has been
restarted/reconnected.Withmultiple correlators sharing the same subscriberId, events are delivered
in a round-robin fashion to each available receiver.

If all subscribedmonitor instances explicitly unsubscribe from a type, or if thosemonitor instances
terminate, then that does not count as a failure. Any events of this type that are sent afterwards
will not be received, and will not be resent upon resubscription.

CAUTION:
In a system with multiple correlators sharing the same subscriberId, an explicit unsubscribe
from one correlator will unsubscribe the other correlators from that type.

Reliable receiving

The CHANNEL constant on the auto-generated EPL type allows you to find the connectivity chain
(Chain) used for receiving events of this type, so that the Chain can be used for reliable messaging
operations.

Example:

104 Connecting Apama Applications to External Components 10.11.3

6 The Digital Event Services Transport Connectivity Plug-in

using com.softwareag.connectivity.Chain;
using com.softwareag.connectivity.ConnectivityPlugins;
using com.softwareag.connectivity.Direction;
using com.softwareag.connectivity.control.AckRequired;
using a.pkg.myEvent; // our auto-generated EPL type from DES

monitor receiver
{
action onload()
{

monitor.subscribe(myEvent.CHANNEL);
Chain c := ConnectivityPlugins.getChainByChannel(myEvent.CHANNEL,

Direction.TOWARDS_HOST);
on all myEvent() as ev
{

// process ev
}
on all AckRequired(chainId=c.getId()) as ar
{

// make sure all events before the AckRequired have been fully processed
...
// and only acknowledge them once that is done
ar.ackUpTo();

}
}

}

If you need themessage identifier of an event for doing per-event acknowledgment (Chain.ackUpTo),
then it will be available as a field on the event. The specific field will be called out in the MessageId
annotation of the auto-generated EPL representation of the Digital Event Services type.

Reliable sending

Again, the CHANNEL constant allows you to find the connectivity chain (Chain) used for sending
events of this type, so that the Chain can be used for reliable messaging operations.

Important:
When using reliable sending, the Digital Event Services storage locationmust be in a safe place,
as events are acknowledged after they have been persisted to disk, but before they are sent to
the remote system. This does not apply if the store-and-forward queue has been disabled, in
which case events are acknowledged only once they have been committed to the remote system.

Example:
using com.softwareag.connectivity.Chain;
using com.softwareag.connectivity.ConnectivityPlugins;
using com.softwareag.connectivity.Direction;
using com.softwareag.connectivity.control.FlushAck;
using a.pkg.myEvent; // our auto-generated EPL type from DES

monitor sender
{
action onload()
{

Chain c := ConnectivityPlugins.getChainByChannel(myEvent.CHANNEL,
Direction.TOWARDS_TRANSPORT);

on all wait (0.1)

Connecting Apama Applications to External Components 10.11.3 105

6 The Digital Event Services Transport Connectivity Plug-in

{
send myEvent("hello") to myEvent.CHANNEL;
// flush after each send and listen for the acknowledgment
on FlushAck(requestId = c.flush()) as fa
{
// event acknowledged, we no longer need to hold on to it

}
}

}
}

106 Connecting Apama Applications to External Components 10.11.3

6 The Digital Event Services Transport Connectivity Plug-in

7 The HTTP Server Transport Connectivity Plug-in

■ About the HTTP server transport ... 108

■ Loading the HTTP server transport .. 110

■ Configuring the HTTP server transport .. 110

■ Handling responses in EPL .. 114

■ Serving static files .. 116

■ Mapping events between EPL and HTTP server requests ... 116

■ HTTP server security .. 126

■ Monitoring status for the HTTP server ... 128

Connecting Apama Applications to External Components 10.11.3 107

About the HTTP server transport
TheHTTP server is a transport for use in connectivity plug-inswhich external services can connect
to over HTTP/REST. It can handle both an HTTP submission-only API which delivers events to
the correlator and a REST request/response API where the responses are controlled from EPL. In
addition to this, it can serve static files. It also allows support for TLS alongside HTTP basic
authentication.

The HTTP server transport can decode HTTP requests and encode EPL responses or static files
with gzip or deflate compression format. It also supports HTML form decoding and can decode
multipart/form-data or application/x-www-form-urlencodedmedia types to a dictionary payload.

This transport provides a dynamic chain manager (the chain manager for each host/port is
configured by an entry under dynamicChainManagers in the YAML configuration file) which creates
chains automatically whenever an HTTP client connects to that host/port. For the HTTP server
transport, there must be exactly one chain definition provided in the dynamicChains section of the
YAML configuration file. The EPL channel that incoming requests are sent to is specified in the
configuration of the dynamicChains, by rules in the mapperCodec section that set the
metadata.sag.channel.

HTTP requests are received by the transport and sent to the chain where they are mapped to EPL
events as described in “Mapping events between EPL and HTTP server requests” on page 116.
Whether the response to the HTTP request is generated automatically or by the EPL application
is controlled as described in “Handling responses in EPL” on page 114.

For more information on YAML configuration files, see “Using Connectivity Plug-ins” on page 23
and especially “Configuration file for connectivity plug-ins” on page 26.

Persistent connections to the server are supported for multiple requests. Details of the individual
requests are configured through the events sent to the chain. The HTTP server supports HTTP
version 1.1 and TLS version 1.2 and above.

The HTTP server is designed to listen for REST services and supports all GET, POST, PUT and DELETE
operations which have been specified in the configuration file. Other than GET requests served by
static files, all requests are treated identically.

The samples/connectivity_plugin/application/httpserver directory of yourApama installation
includes a sample which demonstrate how to use the HTTP server connectivity plug-in to send
and receive HTTP requests containing events into the correlator through various configurations.
See the README.txt file included with the sample for complete instructions on how to run the
sample application.

Note:
The HTTP server connectivity plug-in does not support reliable messaging.

OpenAPI definitions

OpenAPI is an open description format for REST APIs. The OpenAPI Specification (OAS), and
the related tools available from Swagger (https://swagger.io), can be used to design, document,

108 Connecting Apama Applications to External Components 10.11.3

7 The HTTP Server Transport Connectivity Plug-in

https://swagger.io

deploy and test the REST API for an application. The specification allows for API definitions to
be written in either YAML or JSON.

Apama API definitions are supplied in JSON format to the OpenAPI/Swagger 3.0 specification.

HTTP response codes

The transport returns a response to the client. If responses are automatically generated, we return
a “202 Accepted” response after HTTP parsing, but before processing by the correlator, to indicate
that a failure may still occur later in processing the event. If the response is handled by EPL, the
response code is defined by the EPL application and configuration. If there is a failure in parsing
the HTTP part of the request, an error code is returned instead.

The various response codes that we currently support are described below.

ReasonCode

Success response code for automatic responses. On a
successful submission, this indicates that while we have

202 Accepted

accepted it, processing will occur later and we cannot
guarantee completion.

Any other errorwe can conclusively say is due to amalformed
request.

400 Bad Request

We have enabled HTTP basic authentication and the user
either does not supply an Authorization header or it is
incorrect.

401 Unauthorized

The request has a method we do not support (depending on
what is configured in the configuration file).

405 Method Not Allowed

The uncompressed payload is larger than defined with the
maxRequestBytes configuration option. See “Configuring the

413 Request Entity Too Large

HTTP server transport” on page 110 formore information on
this configuration option.

The client has sent an unsupported Content-Encoding header.415 Unsupported Media Type

If toomany authentication failures occur (maxAttempts), then
requests are throttled for the defined cool-down period

429 Too Many Requests

(coolDownSecs) to protect the running correlator. See
“Configuring the HTTP server transport” on page 110 for
more information on the configuration options maxAttempts
and coolDownSecs.

Any other error which occurs before we send the event into
the correlator.

500 Internal Server Error

The HTTP server received a request before the application
called onApplicationInitialized() in the correlator. See

503 Host Not Ready

Connecting Apama Applications to External Components 10.11.3 109

7 The HTTP Server Transport Connectivity Plug-in

ReasonCode

“Sending and receiving eventswith connectivity plug-ins” on
page 38 for more information on this method.

The EPL application did not respond within the configured
timeout.

504 Gateway Timeout

As defined by the EPL application and configuration.Other HTTP response codes

Loading the HTTP server transport
You can load the HTTP server transport by adding the HTTP Server connectivity bundle to your
project in Software AG Designer (see "Adding the HTTP server connectivity plug-in to a project"
in Using Apama with Software AG Designer) or using the apama_project tool (see "Creating and
managing anApamaproject from the command line" inDeploying andManagingApamaApplications).
Alternatively, you can load the transport with the following connectivityPlugins stanza in your
YAML configuration file:
connectivityPlugins:

HTTPServerTransport:
libraryName: connectivity-http-server
class: HTTPServer

Configuring the HTTP server transport
The HTTP server has a manager that deals with connections and a chain that deals with mapping
events into the correlator. There must be exactly one chain definition which will be used by all
managers. If you require multiple ports (that is, with different options), then you need multiple
managers. The HTTP server should be added to a manager and chain containing the appropriate
mapping rules (see “Mapping events between EPL and HTTP server requests” on page 116 for
detailed information).

Manager

Example:
dynamicChainManagers:

HTTPServerManager:
transport: HTTPServerTransport
managerConfig:

port: 15910
bindAddress: 10.13.23.125
tls: false
tlsKeyFile: ${PARENT_DIR}/servername.key.pem
tlsCertificateFile: ${PARENT_DIR}/servername.cert.pem
connectionTimeoutSecs: 60
maxConnections: 16
keepAliveTimeSecs: 120
concurrentChains: true
staticFiles:

110 Connecting Apama Applications to External Components 10.11.3

7 The HTTP Server Transport Connectivity Plug-in

/swagger.json:
file: ${PARENT_DIR}/swaggerDefault.json
contentType: application/json
charset: utf-8

The following configuration options are available for the manager on the HTTP server:

DescriptionConfiguration option

Required. The user-defined port on which the server is
accessible.

port

Type: integer.

Optional. Binds to specific interfaces, potentially onmultiple
ports. Each entry is either a host, or a host:port combination.

bindAddress

If a port is provided, it is used. Otherwise, the port option
applies. The default is to bind to all interfaces on the
configured port.

Type: string or list<string>.

Default: blank.

Optional. Set this to true to enable TLS (https).tls

Type: bool.

Default: false.

The private key for the certificate in PEM format. Required
if TLS is enabled.

tlsKeyFile

Type: path.

The server certificate file in PEM format. Required if TLS is
enabled.

tlsCertificateFile

Type: path.

Maximum time to handle a single request before returning
a timeout (in seconds).

connectionTimeoutSecs

Type: integer.

Default: 60.

Maximum number of simultaneous connections which can
be handled.

maxConnections

Type: integer.

Default: 16.

Connecting Apama Applications to External Components 10.11.3 111

7 The HTTP Server Transport Connectivity Plug-in

DescriptionConfiguration option

Optional. Set this to the maximum idle time in seconds
between requests on a persistent connection before it is
closed. If not set, the default value is used.

keepAliveTimeSecs

Type: integer.

Default: 15.

Optional. Set this to true to enable concurrent chains where
each connection uses a different chain into the HTTP server

concurrentChains

to process requests and responses, up to a maximum of
maxConnections. Requests on the same connection are
processed in order.

If set to false (default), concurrent chains are disabled. A
single chain is used for all connections, and it only processes
a single request at a time.

Type: bool.

Default: false.

Optional. Map of static files. Elements are of the form:staticFiles

/url:
file: ${PARENT_DIR}/source_file.txt
contentType: text/plain
charset: utf-8

file and contentType are required, charset is optional.

Type: Map.

Default: undefined.

Chain

Example:
dynamicChains:

HTTPServerChain:
- apama.eventMap
mapping rules...
- HTTPServerTransport:

authentication:
authenticationType: none
allowedUsersFile: ${PARENT_DIR}/userfile.txt
maxAttempts: 5
coolDownSecs: 30

automaticResponses: false
responseCompression: "ifRequested"
responseTimeoutMs: 5000
allowedMethods: [PUT]

112 Connecting Apama Applications to External Components 10.11.3

7 The HTTP Server Transport Connectivity Plug-in

The following configuration options are available for the chain on the HTTP server:

DescriptionConfiguration option

Set this to HTTP_BASIC if you requireHTTP basic
authentication.

authentication/authenticationType

Type: HTTP_BASIC or none.

Default: none.

Path to the password file (see
“Authentication” on page 127). Required if the
authentication type is HTTP_BASIC.

authentication/allowedUsersFile

Type: path.

Maximum number of failed login attempts
before throttling the requests for that user. See

authentication/maxAttempts

“Authentication” on page 127 for more
information.

Type: integer.

Default: 3.

The number of seconds after the maximum
number of failed login attempts before theHTTP

authentication/coolDownSecs

server attempts authentication of the user again.
See “Authentication” on page 127 for more
information.

Type: integer.

Default: 20.

Set this to true if you want a submission-only
API where the responses are generated

automaticResponses

automatically by the transport. If set to false,
the transport will wait for a response from the
EPL application, subject to a timeout.

Type: bool.

The Accept-Encoding header is used for
negotiating content encoding. Set this to

responseCompression

ifRequested if you want to encode an EPL
response or a static file. If set to never, no
encoding is applied to the entity-body.

Type: string.

Default: never.

Connecting Apama Applications to External Components 10.11.3 113

7 The HTTP Server Transport Connectivity Plug-in

DescriptionConfiguration option

The number of milliseconds we wait for a
response from the EPL application before
returning to the client.

responseTimeoutMs

Type: integer.

Default: 5000 (5s).

Required. List of permitted HTTP verbs (for
example, PUT or GET).

allowedMethods

Type: string or list<string>.

Maximum permitted HTTP payload size in
bytes.

maxRequestBytes

Type: integer.

Default: 1048576 (1MB).

Handling responses in EPL
In order to have the response to an HTTP request handled by your EPL application, you need to
configure the HTTP server chain correctly and then respond to the event delivered to your
application. The transport must have automaticResponses set to false in the configuration (see
also “Configuring theHTTP server transport” on page 110), and itmustmap the following variables
into the message to be able to send responses.

metadata.requestId

This variable is set by the transport for every message. Responses must also have the same
metadata.requestId set. This is normally done bymapping it to a payload field in your request
for the message sent to the host and then back into the metadata for the response.

@{httpServer.responseChannel}

This variable is set when creating the chain. This should be set in your request messages. It
tells the EPL application towhich channel responses should be sent back. Respondingmessages
should also set metadata.http.statusCode correctly.

Note:
You must send the response to the channel specified in the corresponding request event.
The channel name is not guaranteed to be constant even within a single manager.

For example:
dynamicChains:
HTTPServerChain:

- apama.eventMap:
defaultEventType: RequestEvent

114 Connecting Apama Applications to External Components 10.11.3

7 The HTTP Server Transport Connectivity Plug-in

defaultChannel: requests
- mapperCodec:

"*":
towardsHost:

mapFrom:
- payload.requestId: metadata.requestId

defaultValue:
- payload.responseChannel: "@{httpServer.responseChannel}"

towardsTransport:
mapFrom:

- metadata.requestId: payload.requestId
defaultValue:

- metadata.http.statusCode: 200
- jsonCodec
- stringCodec
- HTTPServerTransport:

automaticResponses: false
allowedMethods: [PUT]

Your EPL application must then respond to messages, preserving the requestId and responding
on the correct channel. For example:
on all RequestEvent() as re {

any data := // do something to get the response data
send ResponseEvent(re.requestId, data) to re.responseChannel;

}

Note:
The request and response events given here are examples. You must define your own events
appropriate to your application. For more examples, see “Examples” on page 122.

If a response is not received by the transport within the configured timeout, then the transport
returns a “504 Gateway Timeout” response. This timeout can be configured with the
responseTimeoutMs configuration option (see also “Configuring the HTTP server transport” on
page 110).

The response messages must be converted and mapped using the chain configuration to meet the
following requirements:

The response payload is a binarymessage. Thiswill probably be created using the String codec
from the event.

The metadata.http.statusCode variable is set. This will usually be set to 200 by the Mapper
codec.

The metadata.contentType and metadata.charset variables are set. These will usually be set
by the JSON codec and String codecs when in use, but can also be set by the Mapper codec.

In addition, you can set other HTTP headers. For more details, see “Mapping events between EPL
and HTTP server requests” on page 116.

Connecting Apama Applications to External Components 10.11.3 115

7 The HTTP Server Transport Connectivity Plug-in

Serving static files
The HTTP server allows you to serve static files from disk. You can list the static file URI which
will be available using a GET request, and it will be served by that file. GET requests that match a
static file do not get passed into the correlator.

Static file requests do not go through the checks that all other requests go through, which are:

Transport status (host ready)

HTTP basic authentication

Allowed methods

Maximum request size

You must list static files individually in the configuration file, and you must provide the MIME
type of the file being served. Optionally, you can also provide the charset type.
staticFiles:

/swagger.json:
file: ${PARENT_DIR}/swagger.json
contentType: application/json
charset: utf-8

Mapping events between EPL and HTTP server
requests
The HTTP server can either be used as a general event submission API or as a general
request/responseAPI. A request to theHTTP server contains either a binary payload or a dictionary
payload if the request had either an application/x-www-form-urlencoded or multipart/form-data
content type. In the latter case, there will also be additional metadata fields. For the requests to be
useful to EPL, they must be converted into the format expected by Apama. This is done using the
Classifier codec,Mapper codec and other codecs (see “Codec Connectivity Plug-ins” on page 209).
For request/responseAPIs, the sameprocess is used in reverse to turn EPL events into the responses.

The event types used in EPL should be specific to your application and then mapped in the chain
from the fields produced by the HTTP server. The following fields are created in each event by
the HTTP server. Field names containing periods (.) indicate nested map structures within the
metadata. This nesting is automatically handled by the Mapper codec, and fields can be referred
to there just using these names (see also “The Mapper codec connectivity plug-in” on page 217).

The fields for requests from the transport to EPL are:

DescriptionField

The binary payload of the request.payload

A unique integer identifier which must be preserved
in the response when using EPL-supplied responses.

metadata.requestId

116 Connecting Apama Applications to External Components 10.11.3

7 The HTTP Server Transport Connectivity Plug-in

DescriptionField

The MIME type of the payload (string), taken from
the first parameter of the HTTP Content-Type header,

metadata.contentType

converted to lower case andwith spaces trimmed off.
See also “Handling HTTP headers” on page 119.

The charset parameter of the Content-Type header
(string), converted to lower case,with spaces trimmed
off. See also “Handling HTTP headers” on page 119.

metadata.charset

The path component (string) of the URI.metadata.http.path

The HTTP method of the request: PUT, POST, GET, or
DELETE.

metadata.http.method

When HTTP basic authentication is enabled, the
authenticated user name (string).

metadata.http.user

A key-value map of cookies from the request (map).
See also “Dealing with cookies” on page 121.

metadata.http.cookies

A key-value map of the options in the query-string
component of the request URI (map). See also
“Providing HTTP query parameters” on page 121.

metadata.http.queryString

A key-value map of the HTTP headers sent by the
request (map). Key names are converted to lower case

metadata.http.headers

regardless of original capitalization. See also
“Handling HTTP headers” on page 119.

The address and port of the client connection which
generated this request.

metadata.http.source

The fields for EPL-supplied responses are:

DescriptionField

The binary or dictionary payload of the
response.

payload

The requestId of the corresponding request.
Must be correctly set in responses.

metadata.requestId

TheMIME type of the payload (string). This
is used to construct the HTTP Content-Type

metadata.contentType

header. See also “HandlingHTTPheaders” on
page 119.

The charset of the payload, for text-format
payloads. This is used to construct the HTTP

metadata.charset

Connecting Apama Applications to External Components 10.11.3 117

7 The HTTP Server Transport Connectivity Plug-in

DescriptionField

Content-Type header. See also “Handling
HTTP headers” on page 119.

The HTTP status code (integer). Must be set
in responses.

metadata.http.statusCode

A key-value map of cookies to set on the
client. See also “Dealing with cookies” on
page 121.

metadata.http.cookies

Akey-valuemap of additionalHTTP headers
to send in the response. See also “Handling
HTTP headers” on page 119.

metadata.http.headers

The media type of the form data. See also
“HandlingHTTP formdecoding”onpage 120.

metadata.http.form.name.contentType

The encoding of the form data. See also
“HandlingHTTP formdecoding”onpage 120.

metadata.http.form.name.charset

The filename of the form data. See also
“HandlingHTTP formdecoding”onpage 120.

metadata.http.form.name.filename

Distinguishing request types
A single chain will often deal with multiple event types received within requests. For messages
towards the host, the event type will not yet have been set. The Mapper and Classifier codecs can
use fields in the message (payload or metadata) to set the event type.

You can write the configuration to behave in whatever way you like. There are several ways of
determining to which event type the request corresponds. In the default configuration that we
supply, the event type is provided as part of the request, but it is also possible to infer the event
type from the content of the request.

Below are some examples of what is possible.

You can use the Mapper codec to set the type and channel from the payload as shown below. The
type is part of the request. The Mapper code assigns it to metadata.sag.type.
- mapperCodec:

"*":
towardsHost:

mapFrom:
- metadata.sag.type: payload.type
- metadata.sag.channel: payload.channel
- payload: payload.data

You can use the Classifier codec to determine the event type based on incidental fields in the event,
such as the method and path:
- classifierCodec:

118 Connecting Apama Applications to External Components 10.11.3

7 The HTTP Server Transport Connectivity Plug-in

rules:
- KickEvent:

- metadata.http.method: GET
- metadata.http.path: /kick

- DocumentSubmissionEvent:
- metadata.http.method: PUT
- metadata.http.path: /submit

- DocumentUpdateEvent:
- metadata.http.method: PUT
- metadata.http.path: /update

The default event type is generally used if all events received in requests are the same:
- apama.eventMap:

defaultEventType: TestEvent

You can use regular expressions with the Classifier codec to match more than one REST URL to
a single event type. The following example shows a rule that matches two different REST URLs
such as /database/emptable/78451339 and /database/managertable/50044897:
- classifierCodec:

rules:
- com.apama.swagger.ISSPositionResponse:

- regex:metadata.http.path: /database/[a-zA-Z0-9]*/[0-9]*

For detailed information on these codecs, see “TheMapper codec connectivity plug-in” on page 217
and “The Classifier codec connectivity plug-in” on page 216.

Handling HTTP headers
The HTTP server reads any number of headers from the received request and puts them into
metadata.http.headers. Similarly, when using EPL-supplied responses, headers are read from
metadata.http.headers and written into the response as individual HTTP header lines. Some
special handling is applied as described below.

All HTTP headers are converted from ISO-8859-1 (the character set for HTTP headers as defined
in the RFC publications) to UTF-8 in the metadata and vice-versa.

All HTTP header keys are converted to lowercase (since HTTP header keys are defined to be
case-insensitive). You should use lowercase in all of your mapping and classification rules.

Any HTTP headers for which multiple values have been provided for a single key (after
normalization of case) are dropped.

The content type and charset in requests, which are parsed from the Content-Type header, are
provided in metadata.contentType and metadata.charset respectively. For responses, the two
metadata fields are combined into the Content-Type header.

If HTTP basic authentication is enabled, then the authorization header is removed from
metadata.http.headers, but in this case the user name is still available in metadata.http.user. If
authorization is none, then the authorization type is passed through verbatim.

All cookies in requests are put into the metadata.http.cookies field and that field is used to
generate Set-Cookie headers in responses. See also “Dealing with cookies” on page 121.

Connecting Apama Applications to External Components 10.11.3 119

7 The HTTP Server Transport Connectivity Plug-in

To protect the security of personal data, see "Protecting Personal Data in Apama Applications" in
Developing Apama Applications.

Handling HTTP form decoding
TheHTTP server transport decodes multipart/form-data or application/x-www-form-urlencoded
media types to a dictionary payload.

If the Content-Type header field contains the application/x-www-form-urlencodedmedia type, the
request payload is decoded to a dictionary payload with string keys and string values.

If the Content-type header field contains the multipart/form-datamedia type, the request payload
is decoded to a dictionary payload with string keys and either string or binary values.

For the parts that have binary data, additional metadata is created. This metadata contains the
contentType, charset and filename information for each binary part.

You can get the metadata as follows:
metadata.http.form.name.contentType
metadata.http.form.name.charset
metadata.http.form.name.filename

where name corresponds to the data in payload.name.

Simple example

In this example, a client sends HTTP POST requests to the HTTP server transport and the
Content-Type header is set to multipart/form-data. The request payload contains two form fields,
one field has both a string key and string value, and the other field has a string key and binary
value.

Simple raw HTTP POST request:
POST http://localhost:80/
Content-Length: 737
Content-Type: multipart/form-data; boundary=--123456789
--123456789
Content-Disposition: form-data; name="foo"
bar
--123456789
Content-Disposition: form-data; name="file"; filename="file.txt"
Content-Type: text/plain; charset=utf-8
File data
--123456789--

For the above request, the HTTP server transport sends a dictionary payload({"foo":"bar",
"file":File data}) to EPL.

Metadata created for the file parts have text/plain as the content type, utf-8 as the character
set, and file.txt as the filename. You can map the metadata using the Mapper codec:
- mapperCodec:

"*":

120 Connecting Apama Applications to External Components 10.11.3

7 The HTTP Server Transport Connectivity Plug-in

towardsHost:
mapFrom:
- payload.contentType: metadata.http.form.file.contentType
- payload.charset: metadata.http.form.file.charset
- payload.filename: metadata.http.form.file.filename

Parts metadata is only created for binary or file-upload form-data.

Mapping the body
The HTTP server accepts the payload as a binary object. What the payload consists of depends on
the service you wish to provide. Many services use string-based protocols (such as JSON). For
these types of payload, you can use the String codec (see “The String codec connectivity plug-
in” on page 210). For messages towards the host, the String codec takes a byte array and decodes
it to a string using the UTF-8 encoding. If you are using the String codec, you should put it as the
last codec before the HTTP server.

The resulting string can then be mapped directly into a field in an EPL event, or it can be further
processed by other codecs (such as the JSON codec, as used in our default configuration) before
the resulting fields are mapped into the Apama event.

If you need to vary your processing depending on the type of the data received, you may need to
write a custom codec in order to handle this. To help with distinguishing different payload types,
theHTTP server sets top-level fields to indicate the type of the payload. TheHTTP header indicates
theMIME type populated into metadata.http.contentType. If present, then the character set from
the same HTTP header is copied into metadata.http.charset.

When using EPL-supplied responses, the mapping rules must be bidirectional to map both the
request and the response.

Dealing with cookies
The HTTP server stores cookies in metadata.http.cookies.keyname entries.

In requests, the HTTP server takes any number of HTTP Cookie headers and turns them into
corresponding metadata.http.cookies entries. You can either map the entire set of cookies to a
dictionary field in an event, or you can map a specific cookie key to a field in an event.

In responses, the HTTP server adds Set-Cookie headers for each entry in metadata.http.cookies.
Youmust use theMapper codec tomap things fromyour response events into themetadata entries.

Providing HTTP query parameters
HTTP requests can be set to contain request parameters, which are encoded at the end of the URL
in the following form:

/path?key=value&key=value

The request parameters are decoded and added to the metadata.http.queryStringmapas key-value
pairs. The parameters can either be mapped to a dictionary field in an event, or a specific named
parameter can be mapped to a single field. For example:

Connecting Apama Applications to External Components 10.11.3 121

7 The HTTP Server Transport Connectivity Plug-in

- mapperCodec:
Request:

towardsHost:
mapFrom:

set one query parameter individually
- payload.paramValue: metadata.http.queryString.param
alternatively set all query parameters in an EPL dictionary
- payload.parameters: metadata.http.queryString

Examples

Generic engine_send HTTP service

This example is the same as the default configuration supplied with Apama.

YAML dynamic chain:
dynamicChains:
HTTPServerChain:

- apama.eventMap
- mapperCodec:

"*":
towardsHost:

mapFrom:
- metadata.sag.type: payload.type
- metadata.sag.channel: payload.channel
- payload: payload.data

- jsonCodec
- stringCodec
- HTTPServerTransport:

authentication:
authenticationType: none
allowedUsersFile: ${PARENT_DIR}/userfile.txt

automaticResponses: true
allowedMethods: [PUT]

EPL:
event Temperature
{

integer sensorId;
string sensorName;
float temperature;
dictionary<string,any> extra;

}

monitor.subscribe("myChannel");
on all Temperature() as e {
// ...

}

Curl example:
curl -X PUT http://localhost:8080/ -d '{"type":"Temperature",
"channel":"myChannel", data:{"sensorId":666, "sensorName":"FooBar",
"temperature":3.14",{"A":"alpha"}} }' -H "Content-Type:application/json"

122 Connecting Apama Applications to External Components 10.11.3

7 The HTTP Server Transport Connectivity Plug-in

Event type and channel information is specified in headers

YAML dynamic chain:
dynamicChains:
HTTPServerChain:

- apama.eventMap
- mapperCodec:

"*":
towardsHost:

mapFrom:
- metadata.sag.type : metadata.http.headers.x-apamaeventtype
- metadata.sag.channel : metadata.http.headers.x-apamachannel

- jsonCodec
- stringCodec
- HTTPServerTransport:

authenticationType: none
allowedUsersFile: ${PARENT_DIR}/userfile.txt
automaticResponses: true
allowedMethods: [PUT]

EPL:
event Temperature
{

integer sensorId;
string sensorName;
float temperature;
dictionary<string,any> extra;

}

monitor.subscribe("myChannel");
on all Temperature() as e {
// ...

}

Curl example:
curl -X PUT -H "X-ApamaEventType:Temperature" -H "X-ApamaChannel:myChannel"
http://localhost:8080/ -d '{"sensorId":666, "sensorName":"FooBar",
"temperature":3.14",{"A":"alpha"} }' -H "Content-Type:application/json"

Event type and channel information is specified in the query string

YAML dynamic chain:
dynamicChains:
HTTPServerChain:

- apama.eventMap
- mapperCodec:

"*":
towardsHost:

mapFrom:
- metadata.sag.type : metadata.http.queryString.eventType
- metadata.sag.channel : metadata.http.queryString.channel

- jsonCodec
- stringCodec
- HTTPServerTransport:

Connecting Apama Applications to External Components 10.11.3 123

7 The HTTP Server Transport Connectivity Plug-in

authenticationType: none
allowedUsersFile: ${PARENT_DIR}/userfile.txt
automaticResponses: true
allowedMethods: [PUT]

EPL events:
event Temperature
{

integer sensorId;
string sensorName;
float temperature;
dictionary<string,any> extra;

}

monitor.subscribe("myChannel");
on all Temperature() as e {
// ...

}

Curl example:
curl -X PUT 'http://host:port/submit?eventType=Temperature&channel=myChannel'
-d '{"sensorId":666, "sensorName":"FooBar", "temperature":3.14",{"A":"alpha"} }'

Event types are tied to the method and path and the channel is defaulted

YAML dynamic chain:
dynamicChains:
HTTPServerChain:

- apama.eventMap
- mapperCodec:

KickEvent:
towardsHost:

- metadata.sag.channel: kickEvents
DocumentSubmissionEvent:

towardsHost:
mapFrom:

- payload.data: payload
defaultValue:

- metadata.sag.channel: submissionEvents
DocumentUpdateEvent:

towardsHost:
mapFrom:

- payload.data: payload
defaultValue:

- metadata.sag.channel: updateEvents
- classifierCodec:

rules:
- KickEvent:

- metadata.http.method: GET
- metadata.http.path: /kick

- DocumentSubmissionEvent:
- metadata.http.method: PUT
- metadata.http.path: /submit

- DocumentUpdateEvent:
- metadata.http.method: PUT
- metadata.http.path: /update

124 Connecting Apama Applications to External Components 10.11.3

7 The HTTP Server Transport Connectivity Plug-in

- stringCodec
- HTTPServerTransport:

authenticationType: none
allowedUsersFile: ${PARENT_DIR}/userfile.txt
automaticResponses: true
allowedMethods: [PUT, GET]

EPL events:
event KickEvent { }
event DocumentSubmissionEvent { string data; }
event DocumentUpdateEvent { string data; }

Delivering Apama event strings

This example is using the string form of the event native to Apama. You should only use this
example if you have a system that encodes events in that format.

YAML dynamic chain:
dynamicChains:
HTTPServerChain:

- apama.eventString
- mapperCodec:

"*":
towardsHost:

mapFrom:
- metadata.sag.channel: metadata.http.path

- stringCodec
- HTTPServerTransport:

authenticationType: none
allowedUsersFile: ${PARENT_DIR}/userfile.txt
automaticResponses: true
allowedMethods: [PUT]

EPL:
monitor.subscribe("/channel/ChannelName");
on all Temperature() as e { ... }

Curl example:
curl -X PUT http://host:port/channel/ChannelName -d 'Temperature(10, "Baz",
6.022e23)'

EPL-controlled responses

This example generates responses to the HTTP requests in EPL. Requests should be JSON objects
containing objectId and requestType. Responses are arbitrary JSON objects. See also “Handling
responses in EPL” on page 114.

YAML dynamic chain:
dynamicChains:
HTTPServerChain:

- apama.eventMap:
defaultChannel: requests

Connecting Apama Applications to External Components 10.11.3 125

7 The HTTP Server Transport Connectivity Plug-in

defaultEventType: HTTPRequest
- mapperCodec:

"*":
towardsHost:

mapFrom:
- payload.requestId: metadata.requestId

defaultValue:
- payload.channel: "@{httpServer.responseChannel}"

towardsTransport:
mapFrom:

- metadata.requestId: payload.requestId
- payload: payload.responseData

defaultValue:
- metadata.http.statusCode: 200

- jsonCodec
- stringCodec
- HTTPServerTransport:

automaticResponses: false
allowedMethods: [PUT]

EPL:
monitor.subscribe("requests");
on all HTTPRequest() as r {

send HTTPResponse(r.requestId, getResponseData(r.requestType, r.objectId))
to r.channel;

}

EPL events:
event HTTPRequest {

integer requestId;
integer objectId;
string requestType;
string channel;

}
event HTTPResponse {

integer requestId;
any responseData;

}

HTTP server security

TLS
We provide TLS-based security with the HTTP server and we recommend that you use this in
production. In order to be compatible with our system, you must use TLS version 1.2 or above.

We also recommend that your internet deployment is behind a reverse proxy for optimum security.

In order to use this, you must enable TLS in the YAML configuration file and supply a TLS server
certificate file and corresponding key file, as shown in the following example:
dynamicChainManagers:

HTTPServerManager:
transport: HTTPServerTransport

126 Connecting Apama Applications to External Components 10.11.3

7 The HTTP Server Transport Connectivity Plug-in

managerConfig:
port: 443
tls: true
tlsKeyFile: ${PARENT_DIR}/servername.key.pem
tlsCertificateFile: ${PARENT_DIR}/servername.cert.pem

Authentication

Note:
HTTP basic authentication is not applied to static file requests. See “Serving static files” on
page 116.

HTTP basic authentication support is provided by comparing the request authentication contents
against an authentication password file supplied during configuration. We recommend that you
only use this if you also have TLS enabled. For more complex use cases, webMethods Integration
Server should be used.

If you are using HTTP basic authentication, you must provide a valid authentication password
file using the allowedUsersFile configuration option.

This password file expected by the HTTP server for HTTP basic authentication is compatible with
the output of Apache's htpasswd -B. There is also a bundled application called httpserver_passman
which can create and update password files. You can find the executable for this tool in the bin
folder of your Apama installation. The syntax for this is:
httpserver_passman password_file [options] username [password]

If you only provide a username and no password, then the password is prompted for interactively.
This adds the specified user with the given password, or replaces the password if the user already
exists in the password file.

The options are:

DescriptionOption

Displays usage information.-h | --help

Creates a new file and overwrites anything currently there.-c | --createNew

Deletes the given user, rather than updating or adding the user.-D | --delete

Does not treat subsequent arguments as options. Thus, it is possible
to enter a username that starts with one or two minus signs.

--

If HTTP basic authentication is enabled, then the authorization header is removed from
metadata.http.headers, but in this case the user name is still available in metadata.http.user. If
authorization is none, then the authorization type is passed through verbatim.

Note:
Enabling authentication significantly reduces the maximum achievable throughput on a single
connection since HTTP_BASIC requires verifying credentials on every request. It is not suitable
for high-throughput applications.

Connecting Apama Applications to External Components 10.11.3 127

7 The HTTP Server Transport Connectivity Plug-in

Using the configuration options maxAttempts and coolDownSecs, you can protect against brute force
attacks on users and passwords (see also “Configuring the HTTP server transport” on page 110).
The initial response to a failed authentication attempt is a “401 Unauthorized” response. This
response occurs until the defined number of failed login attempts (maxAttempts) has been reached.
After this, the HTTP server ignores authentication attempts for the defined cool-down period
(coolDownSecs). During that period, the HTTP server returns “429 Too Many Requests” with a
reason of “Too many failed authentication requests, please try again later.”. When the cool-down
period has expired, the HTTP server attempts to authenticate any further request. If it fails that
attempt, the user is immediately placed back into a cool-down period without retries.

Note:
Requests from unknown users are treated in the same way as requests from allowed users to
avoid user information leakage.

To protect the security of personal data, see "Protecting Personal Data in Apama Applications" in
Developing Apama Applications.

Monitoring status for the HTTP server
The HTTP server component provides status values via the user status mechanism. It provides
the following metrics (where prefix is the name of the dynamic chain manager, typically
HTTPServerManager):

DescriptionKey

Moves from STARTING to ONLINEwhen
hostReady is called.

prefix.status

Number of requests resulting in events being
sent to the correlator. This is the primary KPI
for this component.

prefix.eventsTowardsHost

Number of non-2xx responses sent to clients,
including errors generated from EPL. This is

prefix.failedRequests

expected to be 0 and is a KPI with a warning
threshold at 1.

Number of static files served to clients. This
is a KPI.

prefix.staticFileRequests

Number of requestswith invalid credentials.
This KPI is not shown in Command Central
by default. It has a warning threshold at 1.

prefix.authenticationFailures

Number of active chains for connections into
this HTTP server instance. The chains can be

prefix.numChains

reused between connections, but a single
connection only uses one chain. This is
expected to be between 0 and the maximum
number of simultaneous connections which

128 Connecting Apama Applications to External Components 10.11.3

7 The HTTP Server Transport Connectivity Plug-in

DescriptionKey

can be handled (see also maxConnections in
“Configuring theHTTP server transport” on
page 110).

A quickly-evolving exponentially-weighted
moving average of request sizes, in bytes.

prefix.requestSizeEWMAShortBytes

A longer-term exponentially-weighted
moving average of request sizes, in bytes.

prefix.requestSizeEWMALongBytes

Themaximum request size in bytes since the
start of the last 1 hour measurement period.

prefix.requestSizeMaxInLastHourBytes

A quickly-evolving exponentially-weighted
moving average of response sizes, in bytes.

prefix.responseSizeEWMAShortBytes

A longer-term exponentially-weighted
moving average of response sizes, in bytes.

prefix.responseSizeEWMALongBytes

The maximum response size in bytes since
the start of the last 1 hour measurement
period.

prefix.responseSizeMaxInLastHourBytes

For each request/response that is processed, the above MaxInLastHour values are updated if either
of the following conditions is true:

The size of the current message is greater than the existing maximum.

The existing maximum value was set more than 1 hour ago.

Automatic responses are not included in the response size metrics.

Error responses are not included in the response sizemetrics. The request sizemetrics are calculated
before compression and the response size metrics are calculated after decompression.

Formore information aboutmonitor status information published by the correlator, see "Managing
and Monitoring over REST" and "Watching correlator runtime status", both in Deploying and
Managing Apama Applications.

When using Software AG Command Central to manage your correlator, see also "Monitoring the
KPIs for EPL applications and connectivity plug-ins" inDeploying andManagingApamaApplications.

Connecting Apama Applications to External Components 10.11.3 129

7 The HTTP Server Transport Connectivity Plug-in

130 Connecting Apama Applications to External Components 10.11.3

7 The HTTP Server Transport Connectivity Plug-in

8 The HTTP Client Transport Connectivity Plug-in

■ About the HTTP client transport ... 132

■ Loading the HTTP client transport ... 132

■ Configuring the HTTP client transport .. 133

■ Mapping events between EPL and HTTP client requests .. 136

■ Monitoring status for the HTTP client ... 153

■ Configuring dynamic connections to services .. 154

■ Using predefined generic event definitions to invoke HTTP services with JSON and string
payloads ... 154

Connecting Apama Applications to External Components 10.11.3 131

About the HTTP client transport
The HTTP client is a transport for use in connectivity plug-ins which can connect to external
services over HTTP/REST, perform requests on them and return the response as an event. It can
be used by either customizing what codec to use (for example, the JSON codec) and what events
to map to, or it can be used using “generic” events and a predefined chain using a JSON codec,
where instances are managed via an EPL API and JSON payloads are sent and received. Mapping
to events requires more preparation, but gives a powerful type-safe interface for accessing the
results and can support more complex mappings and codecs other than JSON, while the generic
events allow quick access to simple services over JSON.

The HTTP client transport can encode HTTP requests and decode HTTP responses with gzip or
deflate compression format. It also supports HTML form encoding and can encode a dictionary
payload to either multipart/form-data or application/x-www-form-urlencodedmedia types.

When using the event mappings, for each service (host and port combination) that you want to
connect to, you must create a new instance of a connectivity chain in your configuration file. To
use the service, you send events to that chain, where the events are correctly mapped as described
in “Mapping events between EPL and HTTP client requests” on page 136. The response is sent
back by the same chain instance, with the configured mapping rules.

This transport does not provide a dynamic chainmanager. So chains are created either dynamically
fromEPLusing ConnectivityPlugins.createDynamicChain and a named chain definition specified
in the dynamicChains section of the YAML configuration file, or statically using the startChains
section of the YAML configuration file. For more information on YAML configuration files, see
“Using Connectivity Plug-ins” on page 23 and especially “Configuration file for connectivity
plug-ins” on page 26.

Note:
When you are using the “generic” event definitions, dynamic chains are always used. See “Using
predefined generic event definitions to invokeHTTP serviceswith JSONand string payloads” on
page 154 for further information.

Persistent connections to the server are used formultiple requests if this is supported by the service.
Connection details to the service are part of the configuration of the transport in the configuration
file. Details of the individual requests are configured through the events sent to the chain. The
HTTP client supports HTTP version 1.1 and TLS version 1.2 and above.

The HTTP client is designed to talk to REST services and supports GET, POST, PUT and DELETE
operations.

Note:
The HTTP client connectivity plug-in does not support reliable messaging.

Loading the HTTP client transport
You can load the HTTP client transport by adding the HTTP Client connectivity bundle to your
project in Software AG Designer (see "Adding the HTTP client connectivity plug-in to a project"
in Using Apama with Software AG Designer) or using the apama_project tool (see "Creating and

132 Connecting Apama Applications to External Components 10.11.3

8 The HTTP Client Transport Connectivity Plug-in

managing anApamaproject from the command line" inDeploying andManagingApamaApplications).
Alternatively, you can load the transport with the following connectivityPlugins stanza in your
YAML configuration file:
connectivityPlugins:
HTTPClientTransport:

libraryName: connectivity-http-client
class: HTTPClient

Configuring the HTTP client transport
The HTTP client should be added to a chain containing the appropriate mapping rules (see
“Mapping events between EPL and HTTP client requests” on page 136 for detailed information).
Connection information is configured through the HTTPClientTransport element in each chain.
For example:
startChains:
HTTPClientChain:

- apama.eventMap
codecs...
- HTTPClientTransport:

host: www.google.com
basePath: "/myapi/v123"
port: 80
timeoutSecs: 120
tls: false
tlsAcceptUnrecognizedCertificates: false
tlsCertificateAuthorityFile: ""
followRedirects: true
cookieJar: true
authentication:
authenticationType: none
username: ""
password: ""

proxy:
host: ""
port: ""
authentication:

authenticationType: none
username: ""
password: ""

The configuration options below can either be configured statically in the configuration file, or
via replacement variables. Variables of the form ${varname} are replaced at correlator startup time
either from a provided .properties file or from the correlator command line. Variables of the form
@{varname} are replaced at chain creation time if using dynamic connections to services (see also
“Configuring dynamic connections to services” on page 154).

Note:
When you have selected the “generic” optionwhen adding theHTTP Client connectivity bundle
in Software AG Designer or using the apama_project tool (see "Creating and managing an
Apamaproject from the command line" inDeploying andManagingApamaApplications), variables
of the form @{varname} are passed from EPL. See “Using predefined generic event definitions
to invoke HTTP services with JSON and string payloads” on page 154 for further information.

Connecting Apama Applications to External Components 10.11.3 133

8 The HTTP Client Transport Connectivity Plug-in

The following configuration options are available for the HTTP client:

DescriptionConfiguration option

Required. The name of the host to connect to.host

Type: string.

Optional path to be prefixed to the
metadata.http.path for all messages sent to this

basePath

transport. If you have multiple remote
applications on a single host but with different
base paths, you will need to create multiple
transport instances with different basePath
values. The metadata.http.path in responses
will include the prefix, if any.

Type: string.

The port number to connect to.port

Type: integer.

Default: 443 if the tls configuration option is
true, otherwise 80.

Client TCP timeout in seconds.timeoutSecs

Type: integer.

Default: 120.

If true, TLS is used for the connection to the
host.

tls

Type: bool.

Default: false.

By default, connections to unrecognized
certificates are terminated. Set this to true if

tlsAcceptUnrecognizedCertificates

non-validated server certificates are to be
accepted.

Type: bool.

Default: false.

By default, server certifications signed by all
standard Certificate Authorities are validated.

tlsCertificateAuthorityFile

Optionally, you can set this option to provide
a path to a CA certificate file in PEM format to
authenticate the host with.

134 Connecting Apama Applications to External Components 10.11.3

8 The HTTP Client Transport Connectivity Plug-in

DescriptionConfiguration option

Type: string.

If set to true, HTTP redirects are to be followed
transparently to the new URL. This pertains to

followRedirects

responses with status codes for permanent
redirections (301 and 308) and temporary
redirections (302, 303 and 307). If set to false,
the responses with the above status codes are
delivered to EPL and must be handled there.

In some cases, following a redirect will result
in the server responding with one or more
further redirects. To prevent redirect loops, the
total number of automatic redirects is limited.
An error status code (400) will be sent to the
EPL application when the limit has been
reached.

For security reasons, redirects to a different host
or to a different protocol (for example, from
HTTP to HTTPS) are not followed.

Type: bool.

Default: true.

If set to true, cookies are to be stored inmemory
and added to subsequent outgoing requests. If

cookieJar

set to false, cookies are placed in the metadata
and must be handled by EPL. For more
information, see “Dealing with cookies” on
page 146.

Type: bool.

Default: true.

Set this to HTTP_BASIC if you want to
authenticate using HTTP basic authentication.

authentication/authenticationType

Type: HTTP_BASIC or none.

Default: none.

Optional user name for HTTP basic
authentication.

authentication/username

Type: string.

Optional password for HTTP basic
authentication.

authentication/password

Connecting Apama Applications to External Components 10.11.3 135

8 The HTTP Client Transport Connectivity Plug-in

DescriptionConfiguration option

Type: string.

Important:
If you provide the password for HTTP_BASIC
authentication via the configuration file, you
must ensure to protect the configuration file
against any unauthorized access, since the
password will be readable in plain text. To
avoid this, you can provide the password via
a replacement variable from EPL (see also
“Configuring dynamic connections to
services” on page 154).

The name of the proxy server to connect to.proxy/host

Type: string.

The port number of the proxy server to connect
to.

proxy/port

Required if proxy/host is configured.

Type: integer.

Set this to HTTP_BASIC if you want to
authenticate the proxy server usingHTTP basic
authentication.

proxy/authentication/authenticationType

Type: HTTP_BASIC or none.

Default: none.

Optional proxy user name for HTTP basic
authentication.

proxy/authentication/username

Type: string.

Optional proxy password for HTTP basic
authentication.

proxy/authentication/password

Type: string.

Mapping events between EPL and HTTP client
requests
The information in this section applieswhen you have added theHTTP Client connectivity bundle
with the JSON with application-specific event definitions option in Software AG Designer.

136 Connecting Apama Applications to External Components 10.11.3

8 The HTTP Client Transport Connectivity Plug-in

Note:
The JSON with generic request/response event definitions option provides predefined
configurations and events for the HTTP client transport which already define the mapping
between EPL and theHTTP client requests, and youneed not do anything. See “Using predefined
generic event definitions to invoke HTTP services with JSON and string payloads” on page 154
for further information.

The HTTP client accepts requests with metadata fields indicating how to make the request and a
binary or dictionary payload to be submitted as the body of the request. Each entry in the dictionary
payload should have a string key and either a string or a binary value. If the payload is a dictionary,
then metadata.contentTypemust be set to either multipart/form-data or
application/x-www-form-urlencoded. A response contains a binary payload which is the body of
the response and further metadata fields describing the response. For the responses to be useful
to EPL, theymust be converted into the format expected byApama. This is done using theClassifier
codec, Mapper codec and other codecs (see “Codec Connectivity Plug-ins” on page 209).

In order for EPL to connect a response event to the correct request event, each request contains a
top-level requestId field in themetadata. This is returned verbatim in the corresponding response
event along with the path and method copied from the request. If these are mapped to or from
EPL, then they can be used for a request-response protocol in EPL. For example:
integer id := integer.incrementCounter("HTTPClient.requestId"); // get a

// unique ID to differentiate different responses
// listen for success and failure responses
on Response(id=id) as response and not Error(id=id) {

// handle successful requests
}
on Error(id=id) as error and not Response(id=id) {

// handle unsuccessful requests
}
send Request(id, .../* more request data here */) to "httpchannel";

// send the request

The event types used in EPL should be specific to your application and then mapped in the chain
to the fields expected by the HTTP client.

The following fields in each event are read by the HTTP client. Field names containing periods (.)
indicate nested map structures within the metadata. This nesting is automatically handled by the
Mapper codec, and fields can be referred to there just using these names (see also “The Mapper
codec connectivity plug-in” on page 217).

DescriptionField

Binary or dictionary payload to submit with
the request.

payload

Required. A request ID (string) to include in
the response.

metadata.requestId

Required. TheHTTPmethod to use: GET, POST,
PUT or DELETE.

metadata.http.method

Connecting Apama Applications to External Components 10.11.3 137

8 The HTTP Client Transport Connectivity Plug-in

DescriptionField

Required. URI (string) on the host to submit
the request to.

metadata.http.path

The Content-Encoding to be applied to the
entity-body. This can be one of the following:

metadata.http.headers.content-encoding

gzip, deflate or identity. When an
unsupported content encoding is specified,
the HTTP request is ignored and an error
message is logged.

AnHTTPheader (string) to set in the request.
See also “Handling HTTP headers” on
page 141.

metadata.http.headers.keyname

AnHTTP cookie (string) to set in the request.
See also “Dealing with cookies” on page 146.

metadata.http.cookies.keyname

An HTTP query parameter (string) to be
encoded as part of the path in the URI. See

metadata.http.queryString.keyname

also “Providing HTTP query parameters” on
page 147.

Describes the format of the payload (string).
See also “Handling HTTP headers” on
page 141.

metadata.charset

Describes the format of the payload (string).
See also “Handling HTTP headers” on
page 141.

metadata.contentType

The media type of the form data. See also
“Handling HTML form encoding” on
page 142.

metadata.http.form.name.contentType

The encoding of the form data. See also
“Handling HTML form encoding” on
page 142.

metadata.http.form.name.charset

The file name of the form data. See also
“Handling HTML form encoding” on
page 142.

metadata.http.form.name.filename

The responses returned from the HTTP client contain the following fields:

DescriptionField

Binary payload received in the response. May be
an empty buffer if no response, or null in some
error cases.

payload

138 Connecting Apama Applications to External Components 10.11.3

8 The HTTP Client Transport Connectivity Plug-in

DescriptionField

The request ID (string) from the request. Always
present in the response.

metadata.requestId

The HTTP method from the request: GET, POST,
PUT or DELETE. Always present in the response.

metadata.http.method

TheHTTPpath (string) from the request. Always
present in the response.

metadata.http.path

HTTP status code (integer). Code 200 indicates
success. All other codes indicate errors. Always

metadata.http.statusCode

present in the response. See also “Distinguishing
response types” on page 140.

HTTP status reason (string). Always present in
the response.

metadata.http.statusReason

The HTTP header (string) returned by the
response. See also “Handling HTTP headers” on
page 141.

metadata.http.headers.keyname

An HTTP cookie (string) being set by the
response. Only present if this is in the response

metadata.http.cookies.keyname

headers. See also “Dealing with cookies” on
page 146.

Describes the format of the payload (string). Only
present if this is in the response headers. See also
“Handling HTTP headers” on page 141.

metadata.charset

Describes the format of the payload (string). Only
present if this is in the response headers. See also
“Handling HTTP headers” on page 141.

metadata.contentType

You can use the Mapper codec to move things between the payload and the metadata, and vice
versa. For example:
startChains:
HTTPClientChain:

- apama.eventMap
- mapperCodec:

MyRequest:
towardsTransport:

mapFrom:
- metadata.http.path: payload.path
- metadata.requestId: payload.id
- payload: payload.body

defaultValue:
- metadata.http.method: GET
- metadata.http.headers.accept: application/json

MyResponse:
towardsHost:

Connecting Apama Applications to External Components 10.11.3 139

8 The HTTP Client Transport Connectivity Plug-in

mapFrom:
- payload.body: payload
- payload.path: metadata.http.path
- payload.id: metadata.requestId

Error:
towardsHost:
mapFrom:

- payload.message: metadata.http.statusReason
- payload.id: metadata.requestId
- payload.path: metadata.http.path
- payload.code: metadata.http.statusCode

- classifierCodec:
rules:

- MyResponse:
- metadata.http.statusCode: 200

- Error:
- metadata.http.statusCode:

- stringCodec
- HTTPClientTransport

The above example also demonstrates how to use the Classifier codec to split responses into normal
responses and error responses based on the status code (see also “Distinguishing response types” on
page 140).

Examples of using the Mapper and Classifier codecs to set these fields can be found in “Example
mapping rules” on page 147.

Distinguishing response types
A single chainwill often deal withmultiple event types in either direction. In the direction towards
the transport, the type is already known and can be used to create multiple stanzas in the Mapper
codec. For messages towards the host, the event type will not yet have been set. The Classifier
codec can use fields in the message (payload or metadata) to set the event type.

For the HTTP client, one of the major distinctions is between success replies and various types of
failure. The HTTP status code (metadata.http.statusCode) is used to determine whether or not
the response is a success. Typically, a response code of 200 indicates that the request was a success,
and anything else would be some kind of error. Both errors returned by the remote host and issues
which occur within the client itself are returned as messages with a status code other than 200.

For example, a Classifier codec which wants to just distinguish errors and success would look as
follows:
- classifierCodec:

rules:
- MyResponse:

- metadata.http.statusCode: 200
- Error:

- metadata.http.statusCode:

There may also be multiple types of success response, possibly from requests to different URLs
in the same host. You can use other fields from the metadata or the payload to set the event type.
For example:
- classifierCodec:

140 Connecting Apama Applications to External Components 10.11.3

8 The HTTP Client Transport Connectivity Plug-in

rules:
- LoginSuccess: # OK response with a session cookie set

- metadata.http.statusCode: 200
- metadata.http.cookies.session:

- DataResponse1:
- metadata.http.statusCode: 200
- payload.datatype: foo

- DataResponse2:
- metadata.http.statusCode: 200
- metadata.http.path: /data2

- Error:
- metadata.http.statusCode:

Handling HTTP headers
The HTTP client reads any number of metadata.http.headers.keyname variables from your event
and puts them into theHTTP request. Similarly, any headers returned in the response aremapped
to the same variables in the response. Some special handling is applied as described below.

All HTTP headers are converted from ISO-8859-1 (the character set for HTTP headers as defined
in the RFC publications) to UTF-8 in the metadata (and vice versa for requests).

All HTTP header keys are converted to lowercase in both directions (since HTTP header keys are
defined to be case-insensitive). You should use lowercase in all of yourmapping and classification
rules.

Any HTTP headers for which multiple values have been provided for a single key (after
normalization of case) are dropped in either direction.

The following HTTP headers are handled specially in requests:

DescriptionValueField

If not provided in the request, but
contentType is set, this is set to the contents
of metadata.contentType.

from contentTypeaccept

Set to utf-8 if not set in the request.utf-8accept-charset

Set to identity if not set in the request.identityaccept-encoding

Always overridden if the authentication type
HTTP_BASIC is defined in the configuration.

from configurationauthorization

Otherwise, the value from the request
metadata is used.

Always overridden.keep-aliveconnection

Always overridden.length of the payloadcontent-length

Set from contentType and charset if not set
in the request. Content types starting with

from contentType and
charset

content-type

text/will have a charset parameter

Connecting Apama Applications to External Components 10.11.3 141

8 The HTTP Client Transport Connectivity Plug-in

DescriptionValueField

appended from the charset field. Other
content types will only have the type from
the contentTypewith no parameters.

This field will not be added if the body is
empty and the content-type header is not set
explicitly in the request.

Set to the current date and time if not set in
the request.

current date and timedate

Always overridden.from configurationhost

Set if not set in the request.Apama/$VERSION ($PLATFORM
$ARCH)

user-agent

The following HTTP header is handled specially in responses:

DescriptionValueField

Always overridden.length of the payloadContent-Length

In addition, the top-level fields metadata.charset and metadata.contentType are set in the response
from the HTTP content-type header.

Cookie and Set-Cookie headers are handled specially. See “Dealing with cookies” on page 146.

Handling HTML form encoding
If the body of the request is a dictionary payload having a string key and either a string or binary
value, the request body is then encoded to either multipart/form-data or
application/x-www-form-urlencodedmedia types, depending on metadata.contentType.

If metadata.contentType is set to application/x-www-form-urlencoded, then the dictionary payload
must have string keys and string values and is transmitted as URL-encoded form data.

If metadata.contentType is set to multipart/form-data, then the dictionary payload is encoded to
multi-part formdata. Thismethodmust be used to send non-ASCII text or binary data. The binary
data formfields should have the following additionalmetadata: filename, contentType and charset.
filename is a required parameter.

You can put these metadata items in a form dictionary as follows:
metadata.http.form.name.contentType
metadata.http.form.name.charset
metadata.http.form.name.filename

where name corresponds to the data in payload.name.

142 Connecting Apama Applications to External Components 10.11.3

8 The HTTP Client Transport Connectivity Plug-in

Simple example

Send a dictionary payload request body which has both key and value strings using the
application/x-www-form-urlencodedmethod:
event HTTPRequestURLEncoding {

integer id;
string method;
string path;
string contentType;
dictionary<string, string> data;

}

Send a dictionary payload request body which has a string key and either a string or binary value
using the multipart/form-datamethod; provide the metadata for binary form data using
formMetadata:
event HTTPRequestMultiPartForm {

integer id;
string method;
string path;
string contentType;
dictionary<string, string> data;
dictionary<string, dictionary<string,string>> formMetadata;

}

Send a request:
monitor TestFormEncoding {
action onload() {

dictionary<string, string> dataURL :=
{"string":"Hello World", "foo":"bar"};

dictionary<string, string> dataMultiPart :=
{"string":"Hello World", "binary": Binary Data};

//Metadata for form data filed
dictionary<string,dictionary<string,string>> formMetadata := {

"binary":{
"filename":"file.txt",
"charset":"utf-8",
"contentType":"text/plain"

}
};
integer id := integer.incrementCounter("HTTPClient.requestId");

//Using application/x-www-form-urlencoded media type
send HTTPRequestURLEncoding(id, "POST", "/",

"application/x-www-form-urlencoded", dataURL) to "http";

id := integer.incrementCounter("HTTPClient.requestId");
//Using multipart/form-data media type
send HTTPRequestMultiPartForm(id, "POST", "/", "multipart/form-data",

dataMultiPart, formMetadata) to "http";
}

}

Map the metadata of binary form data using the Mapper codec:

Connecting Apama Applications to External Components 10.11.3 143

8 The HTTP Client Transport Connectivity Plug-in

- mapperCodec:
HTTPRequestMultiPartForm:

towardsTransport:
mapFrom:

- metadata.requestId: payload.id
- metadata.http.method: payload.method
- metadata.http.path: payload.path
- metadata.contentType: payload.contentType
- metadata.http.form.binary.contentType:

payload.formMetadata.binary.contentType
- metadata.http.form.binary.filename:

payload.formMetadata.binary.filename
- metadata.http.form.binary.charset:

payload.formMetadata.binary.charset
- payload: payload.data

Handling HTML form encoding using a predefined generic event
definition
You can invoke an HTTP service with a payload encoded to either multipart/form-data or
application/x-www-form-urlencodedmedia types using thepredefined FormRequest event definition.
For detailed information about this event definition, see the API Reference for EPL (ApamaDoc).

The FormRequest event definition must be used if metadata.contentType is set to either
multipart/form-data or application/x-www-form-urlencoded. The request payload must be a
dictionary having a string key and string value.

If metadata.contentType is set to application/x-www-form-urlencoded, then the dictionary payload
is transmitted as URL-encoded form data.

If metadata.contentType is set to multipart/form-data, then the dictionary payload is encoded to
multi-part form data.

Note:
Binary data cannot be read in Apama EPL. Hence it is only possible to send non-ASCII text data
form fields with a standard HTTPClientGenericJSONChain.

Simple example

Use multipart/form-data and application/x-www-form-urlencodedmedia types with non-ASCII
text data form fields:
monitor TestHtmlEncoding
{
action onload()
{

dictionary<string, string> payload := {"foo":"bar", "abc":"def"};
dictionary<string, dictionary<string, string>> formMetadata :=

new dictionary<string, dictionary<string, string>>;
HttpTransport transport :=

HttpTransport.getOrCreateWithConfigurations("my_host",
8080, new dictionary<string, string>);

HttpOptions httpOptions := new HttpOptions;
// Using application/x-www-form-urlencoded media type

144 Connecting Apama Applications to External Components 10.11.3

8 The HTTP Client Transport Connectivity Plug-in

httpOptions.headers["content-type"] := "application/x-www-form-urlencoded";
FormRequest(

transport.createRequest(RequestType.POST, "/", payload, httpOptions),
formMetadata).execute(handleResponse);

// Using multipart/form-data media type
httpOptions.headers["content-type"] := "multipart/form-data";
FormRequest(

transport.createRequest(RequestType.POST, "/", payload, httpOptions),
formMetadata).execute(handleResponse);

}
action handleResponse(Response resp)
{

log "Got response: " + resp.toString() at INFO;
}

}

For multipart/form-data, you can still encode binary data form fields. But to do that, you need
to develop a custom plug-in which introduces binary data in your customized chain. In that case,
the binary data form fields must have the following additional metadata:

filename

contentType

charset

filename is a required parameter. You can provide this metadata as follows:
monitor TestHtmlEncodingBinaryFields
{
action onload()
{

dictionary<string, string> payload :=
{"foo":"bar", "binary_field": ...binary_data};

dictionary<string, dictionary<string, string>> formMetadata := {
"binary_field":{

"filename":"file1.txt",
"charset":"utf-8",
"contentType":"text/plain"
}

};
HttpTransport transport :=

HttpTransport.getOrCreateWithConfigurations("my_host",
8080, new dictionary<string, string>);

HttpOptions httpOptions := new HttpOptions;
// Using multipart/form-data media type
httpOptions.headers["content-type"] := "multipart/form-data";
FormRequest(transport.createRequest(RequestType.POST, "/", payload,

httpOptions), formMetadata).execute(handleResponse);
}
action handleResponse(Response resp)
{ log "Got response: " + resp.toString() at INFO; }

}

Connecting Apama Applications to External Components 10.11.3 145

8 The HTTP Client Transport Connectivity Plug-in

Mapping the body
The HTTP client accepts and returns the payload as a binary object. What the payload consists of
depends on the service to which you are connecting. Many services use string-based protocols
(such as JSON). For these types of payload, you can use the String codec (see “The String codec
connectivity plug-in” on page 210). On messages towards the transport, the String codec takes a
string and encodes it in UTF-8 bytes. For messages towards the host, the String codec takes a byte
array and decodes it to a string using the UTF-8 encoding. If you are using the String codec, you
should put it as the last codec before the HTTP client.

To create a request with no payload (such as a GET request), you should pass an empty string to
the String codec, which it will convert to a zero-byte payload. If you are using the “generic” JSON
option (see also “Using predefined generic event definitions to invoke HTTP services with JSON
and string payloads” on page 154), then you can do the same by sending a new any as the payload.
For example:
transport.createRequest(RequestType.GET, "/path", new any, new HttpOptions);

The createGETRequest action will do this for you. In order to recreate this with your own custom
chain using the JSON codec, then you need to have an empty payload (which will skip the JSON
codec) and then use a second Mapper codec to add an empty string to the payload before the
String codec:
- jsonCodec
- mapperCodec:

"*":
towardsTransport:
defaultValue:
payload: ""

- stringCodec

The resulting string can then be mapped directly into a field in an EPL event, or it can be further
processed by other codecs (such as the JSON codec) before the resulting fields are mapped into
the Apama event.

If you need to vary your processing depending on the type of the returned data, you may need
to write a custom codec in order to handle this. To help with distinguishing different payload
types, theHTTP client sets top-level fields to indicate the type of the payload. metadata.contentType
contains the MIME type indicated in the Content-Type HTTP header. If present, then
metadata.charset indicates the character set from the same HTTP header.

Dealing with cookies
Some HTTP services set cookies and require them to be set in further requests.

When the configuration option cookieJar is true (default), cookies received from the server are
stored in memory and added to subsequent outgoing requests. Cookies forwarded using
metadata.http.cookies are honored and not overwritten. The HTTP client also honors additional
cookie attributes such as path, expiry and max-age. Expired cookies are automatically removed
from the internal cache. See also “Configuring the HTTP client transport” on page 133.

146 Connecting Apama Applications to External Components 10.11.3

8 The HTTP Client Transport Connectivity Plug-in

When the configuration option cookieJar is false and if you need to take a specific cookie in a
response and return it in future requests, you need to map it out into a field in the response event,
and then map it back from future request events. The HTTP client stores cookies in
metadata.http.cookies.keyname entries. In requests, the HTTP client reads all of the
metadata.http.cookies entries and combines them into a single HTTP Cookies header to send to
the server. In responses, theHTTP client takes any number of HTTP Set-Cookie headers and turns
them into corresponding metadata.http.cookies entries.

Providing HTTP query parameters
HTTP requests can contain request parameters, which are encoded at the end of the URL in the
following form:

/path?key=value&key=value

The request parameters can be provided as part of the metadata.http.path element in a request.
In this case, however, they must be correctly encoded within the request.

A better solution is to provide the request parameters as part of the metadata.http.queryString
element. This is a map of key/value pairs which will be correctly HTTP encoded and appended
to the end of the metadata.http.path in the request. The parameters can either be set as a map
directly out of the payload, or they can be set individually via the Mapper codec. For example:
- mapperCodec:

Request:
towardsTransport:

mapFrom:
set one query parameter individually
- metadata.http.queryString.param: payload.paramValue
alternatively set all query parameters from an EPL dictionary
- metadata.http.queryString: payload.parameters

Example mapping rules
A full example configuration can be found in the samples directory of your Apama installation.
The monitoring sample, found in samples/connectivity_plugin/app/monitoring, can be run both
with this pre-compiled HTTP client or with the simple HTTP client sample under samples/
connectivity_plugin/cpp/httpclient.

Simple example

The following is a simple REST service with a single URL that is not interested in dealing with
error cases:
event PutData {
integer requestId;
string requestString;

}
event PutDataResponse {
integer requestId;
string responseString;

}

Connecting Apama Applications to External Components 10.11.3 147

8 The HTTP Client Transport Connectivity Plug-in

Each PUT request contains a request string which performs an action on the server and returns
another string in the response.
startChains:
simpleRestService:

- apama.eventMap:
Channel that responses are delivered on
defaultChannel: SRS-response

- mapperCodec:
PutData: # requests

towardsTransport:
mapFrom:

- metadata.requestId: payload.requestId
- payload: payload.requestString

defaultValue:
- metadata.http.method: PUT
- metadata.http.path: /path/to/service

PutDataResponse:
towardsHost:
mapFrom:

- payload.responseString: payload
- payload.requestId: metadata.requestId

- classifierCodec:
rules:

- PutDataResponse:
- stringCodec
- HTTPClientTransport:

host: foo.com

CRUD service example

The following is amore complex service that implements a full CRUD (create, read, update, delete)
service, with different types of request on different objects. There are several different request
types with individual mapping rules. The create request is implemented with these events and
mapping rules:
event CreateResource {

integer id;
string value;

}
event ResourceCreated {

integer id;
string resource;

}

There is one URL for adding new resources which returns the resource identifier which can be
used to manipulate it in future via a redirection header.
- mapperCodec:

CreateResource: # requests
towardsTransport:
mapFrom:

- metadata.requestId: payload.id
- payload: payload.value

defaultValue:
- metadata.http.path: /newResource
- metadata.http.method: PUT

ResourceCreated:

148 Connecting Apama Applications to External Components 10.11.3

8 The HTTP Client Transport Connectivity Plug-in

towardsHost:
mapFrom:
redirects us to the new resource
- payload.resource: metadata.http.headers.location

- payload.id: metadata.requestId

The full example is provided below:
event GetValue {

integer id;
string resource;

}
event CurrentValue {

integer id;
string value;

}
event UpdateValue {

integer id;
string resource;
string newValue;

}
event CreateResource {

integer id;
string value;

}
event ResourceCreated {

integer id;
string resource;

}
event DestroyResource {

integer id;
string resource;

}
event ResourceDestroyed {

integer id;
}
event ResourceNotFound {

integer id;
string resource;

}
event InternalError {

integer id;
string error;

}

startChains:
storageService:

- apama.eventMap:
Channel that responses are delivered on
defaultChannel: storageResponses

- mapperCodec:
CreateResource: # requests
towardsTransport:

mapFrom:
- metadata.requestId: payload.id
- payload: payload.value

defaultValue:

Connecting Apama Applications to External Components 10.11.3 149

8 The HTTP Client Transport Connectivity Plug-in

- metadata.http.path: /newResource
- metadata.http.method: PUT

DestroyResource: # requests
towardsTransport:
mapFrom:

- metadata.requestId: payload.id
- metadata.path: payload.resource

defaultValue:
- metadata.http.method: DELETE

UpdateValue: # requests
towardsTransport:
mapFrom:

- metadata.requestId: payload.id
- metadata.path: payload.resource
- payload: payload.newValue

defaultValue:
- metadata.http.method: PUT

GetValue: # requests
towardsTransport:
mapFrom:

- metadata.requestId: payload.id
- metadata.path: payload.resource

defaultValue:
- metadata.http.method: GET

ResourceCreated:
towardsHost:
mapFrom:

redirects us to the new resource
- payload.resource: metadata.http.headers.location
- payload.id: metadata.requestId

ResourceDestroyed:
towardsHost:
mapFrom:

- payload.id: metadata.requestId
CurrentValue:

towardsHost:
mapFrom:

- payload.value: payload
- payload.id: metadata.requestId

ResourceNotFound:
towardsHost:
mapFrom:

- payload.resource: metadata.http.path
- payload.id: metadata.requestId

InternalError:
towardsHost:
mapFrom:

- payload.error: metadata.statusReason
- payload.id: metadata.requestId

- classifierCodec:
rules:

- ResourceCreated:
- metadata.http.statusCode: 200
- metadata.http.path: /newResource

- CurrentValue:
- metadata.http.statusCode: 200
- metadata.http.method: GET

- ResourceDestroyed:
- metadata.http.statusCode: 200
- metadata.http.method: DELETE

150 Connecting Apama Applications to External Components 10.11.3

8 The HTTP Client Transport Connectivity Plug-in

- ResourceNotFound:
- metadata.http.statusCode: 404

- InternalError:
- metadata.http.statusCode:

- stringCodec
- HTTPClientTransport:

host: foo.com

Login example

An example with a login request that has to manage cookies might look like this when the service
uses JSON:
event Command {

string command;
sequence<string> arguments;

}
event Login {

string username;
string password;

}
event LoginSuccess {

dictionary<string, string> sessionCookies;
}
event ExecuteCommand {

integer id;
Command command;
dictionary<string, string> sessionCookies;

}
event CommandResponse {

integer id;
string response;

}

The Login command sends a password and sets a cookie which must be set in all the following
requests. In practice this may need to be repeated on startup, after some timeout period or certain
errors.
startChains:
remoteAccessService:

- apama.eventMap:
Channel that you send requests to
subscribeChannels: remoteAccess
Channel that responses are delivered on
defaultChannel: remoteAccess

- mapperCodec:
Login: # requests
towardsTransport:

mapFrom:
payload.user and payload.password will be converted
into a JSON document

defaultValue:
- metadata.http.path: /login
- metadata.http.method: PUT
- metadata.requestId: "" # ignored

ExecuteCommand: # requests
towardsTransport:

mapFrom:

Connecting Apama Applications to External Components 10.11.3 151

8 The HTTP Client Transport Connectivity Plug-in

- metadata.requestId: payload.id
set the whole map of any cookies set by the server
- metadata.http.cookies: payload.sessionCookies
a JSON object made from this event
- payload: payload.command

defaultValue:
- metadata.http.method: PUT
- metadata.path: /execute

LoginSuccess:
towardsHost:
mapFrom:

store all cookies set by the server,
no matter what they are
- payload.sessionCookies: metadata.http.cookies

CommandResponse:
towardsHost:
mapFrom:

payload.response already parsed from the JSON response
- payload.id: metadata.requestId

- classifierCodec:
rules:

- LoginSuccess:
- metadata.http.statusCode: 200
- metadata.http.cookies.session:

- CommandResponse:
- metadata.http.statusCode: 200

- jsonCodec
- stringCodec
- HTTPClientTransport:

host: foo.com
tls: true

Content-encoding example

The following example shows how to define content encoding for an HTTP request:
event HTTPRequest
{

integer id;
string path;
string data;
string method;
string contentEncoding;

}

You can use the Mapper codec to map the encoding method as follows:
- mapperCodec:

HTTPRequest:
towardsTransport:
mapFrom:

- metadata.http.path: payload.path
- metadata.requestId: payload.id
- metadata.http.method: payload.method
- metadata.http.headers.content-encoding: payload.contentEncoding
- payload: payload.data

152 Connecting Apama Applications to External Components 10.11.3

8 The HTTP Client Transport Connectivity Plug-in

Monitoring status for the HTTP client
The HTTP client component provides status values via the user status mechanism. It provides the
following metrics (where prefix consists of the chain identifier and plug-in name, typically
HTTPClientChain.HTTPClientTransport):

DescriptionKey

FAILED if the most recent request has
failed, otherwise ONLINE.

prefix.status

Number of error responses to requests
which have been sent.

prefix.errorsTowardsHost

Number of success responses to requests
which have been sent.

prefix.responsesTowardsHost

A quickly-evolving
exponentially-weightedmoving average
of request latencies, in milliseconds.

prefix.requestLatencyEWMAShortMillis

A longer-term exponentially-weighted
moving average of request latencies, in
milliseconds.

prefix.requestLatencyEWMALongMillis

A quickly-evolving
exponentially-weightedmoving average
of request sizes, in bytes.

prefix.requestSizeEWMAShortBytes

A longer-term exponentially-weighted
moving average of request sizes, in bytes.

prefix.requestSizeEWMALongBytes

Themaximum request size in bytes since
the start of the last 1 hour measurement
period.

prefix.requestSizeMaxInLastHourBytes

A quickly-evolving
exponentially-weightedmoving average
of response sizes, in bytes.

prefix.responseSizeEWMAShortBytes

A longer-term exponentially-weighted
moving average of response sizes, in
bytes.

prefix.responseSizeEWMALongBytes

The maximum response size in bytes
since the start of the last 1 hour
measurement period.

prefix.responseSizeMaxInLastHourBytes

For each request/response that is processed, the above MaxInLastHour values are updated if either
of the following conditions is true:

Connecting Apama Applications to External Components 10.11.3 153

8 The HTTP Client Transport Connectivity Plug-in

The size of the current message is greater than the existing maximum.

The existing maximum value was set more than 1 hour ago.

Error responses are not included in the response sizemetrics. The request sizemetrics are calculated
before compression and the response size metrics are calculated after decompression.

Formore information aboutmonitor status information published by the correlator, see "Managing
and Monitoring over REST" and "Watching correlator runtime status", both in Deploying and
Managing Apama Applications.

When using Software AG Command Central to manage your correlator, see also "Monitoring the
KPIs for EPL applications and connectivity plug-ins" inDeploying andManagingApamaApplications.

Configuring dynamic connections to services
Many applications have a single or small number of statically configured connections to services.
For other applications, the connections can be configured dynamically at runtime. To configure
the connections dynamically, define your chain under dynamicChains rather than staticChains
with the configuration details using dynamic chain replacement variables (@{varname}):
dynamicChains:
HTTPClientChain:

- apama.eventMap
mapping rules...
- HTTPClientTransport:

host: "@{HOST}"
port: "@{PORT}"

Then you can create instances of that chain configured for specific hosts and ports using the
createDynamicChainmethod on ConnectivityPlugins:
action connectToNewHost(string channelName, string host, integer port,
string defaultChannelTowardsHost)

returns Chain
{

return ConnectivityPlugins.createDynamicChain(
"http-"+host+":"+port.toString(), [channelName],
"http", {"HOST":host,"PORT:"port.toString()}, defaultChannelTowardsHost);

}

Events can be sent to the chain via the supplied channelName. When the connection is no longer
needed, it can be destroyed via the returned Chain object.

Using predefined generic event definitions to invoke
HTTP services with JSON and string payloads

JSON payloads

You can invoke an HTTP service with a JSON payload by using predefined generic Apama event
definitions. To do so, you have to use the JSON with generic request/response event definitions

154 Connecting Apama Applications to External Components 10.11.3

8 The HTTP Client Transport Connectivity Plug-in

option when adding the HTTP client connectivity plug-in. See also "Adding the HTTP client
connectivity plug-in to a project" in Using Apama with Software AG Designer.

This “generic” option uses a predefined chain definition with dynamic chain instances to invoke
multiple HTTP services, and it uses event types in the com.softwareag.connectivity.httpclient
package. For detailed information about the available event types, see the API Reference for EPL
(ApamaDoc).

The following example shows how to invoke an HTTP service using the generic events:
action performRequest() {

// 1) Get the transport instance
HttpTransport transport := HttpTransport.getOrCreate("www.example.com", 80);
// 2) Create the request event
Request req:= transport.createGETRequest("/geo/");
// 3) Execute the request and pass the callback action
req.execute(handleResponse);

}
action handleResponse(Response res) {

// 4) Handle the response
if res.isSuccess() {

// 5) Extract data from the payload
log res.payload.getString("location.city") at INFO;

} else {
log "Failed: " + res.statusMessage at ERROR;

}
}

Overriding the content-type header of an HTTP request to allow non-JSON string
payloads

You can override the content-type header of an HTTP request to allow for non-JSON string
payloads.

Whenever the content-type header of a request is not overridden, the payloads are encoded as
JSON (this is the default setting). When you override the content-type header, the JSON codec is
skipped and the payload is not encoded as JSON, allowing string data to be passed through. The
decoding of the response to the request depends on the content type provided by the server.

The following example demonstrates how to override an HTTP request's content-type header to
send string data:
// 1) HTTP PUT request with string ("example string payload") payload
req := transport.createPUTRequest("/plain_string", "example string payload");
// 2) Override the request's content-type header
req.setHeader("content-type", "text/plain");
// 3) Execute the request, passing the callback action handleResponse
req.execute(handleResponse);

Connecting Apama Applications to External Components 10.11.3 155

8 The HTTP Client Transport Connectivity Plug-in

156 Connecting Apama Applications to External Components 10.11.3

8 The HTTP Client Transport Connectivity Plug-in

9 The Kafka Transport Connectivity Plug-in

■ About the Kafka transport .. 158

■ Loading the Kafka transport ... 158

■ Configuring the connection to Kafka (dynamicChainManagers) 158

■ Configuring message transformations (dynamicChains) .. 160

■ Payload for the Kafka message .. 161

■ Metadata for the Kafka message ... 161

Connecting Apama Applications to External Components 10.11.3 157

About the Kafka transport
Kafka is a distributed streaming platform. See https://kafka.apache.org/ for detailed information.

Apama provides a connectivity plug-in, the Kafka transport, which can be used to communicate
with the Kafka distributed streaming platform. Kafka messages can be transformed to and from
Apama events by listening for and sending events to channels such as prefix:topic (where the
prefix is configurable).

You configure the Kafka connectivity plug-in by editing the files that comewith theKafka bundle.
The properties file defines the substitution variables that are used in the YAML configuration file
which also comes with the bundle. See "Adding the Kafka connectivity plug-in to a project" in
Using Apama with Software AG Designer for further information.

Note:
In addition to using Software AG Designer to add bundles, you can also do this using the
apama_project command-line tool. See "Creating and managing an Apama project from the
command line" in Deploying and Managing Apama Applications for more information.

This transport provides a dynamic chain manager which creates chains automatically when EPL
subscribes or sends to a correlator channel with the configured prefix, typically kafka:. For the
Kafka transport, there must be exactly one chain definition provided in the dynamicChains section
of the YAML configuration file.

For more information on YAML configuration files, see “Using Connectivity Plug-ins” on page 23
and especially “Configuration file for connectivity plug-ins” on page 26.

Note:
The Kafka connectivity plug-in does not support reliable messaging.

Loading the Kafka transport
You can load the Kafka transport by adding the Kafka connectivity bundle to your project in
Software AG Designer (see"Adding the Kafka connectivity plug-in to a project" in Using Apama
with Software AG Designer). Alternatively, you can load the transport with the following
connectivityPlugins stanza in your YAML configuration file:
kafkaTransport:
classpath: ${APAMA_HOME}/lib/connectivity-kafka.jar
class: com.apama.kafka.ChainManager

Configuring the connection to Kafka
(dynamicChainManagers)
You configure one or more dynamicChainManagers to connect to different Kafka brokers. For
example:
dynamicChainManagers:

158 Connecting Apama Applications to External Components 10.11.3

9 The Kafka Transport Connectivity Plug-in

https://kafka.apache.org/

kafkaManager:
transport: kafkaTransport
managerConfig:

channelPrefix: "kafka:"
bootstrap.servers: "localhost:9092"

Connection-related configuration is specified in the managerConfig stanza on the
dynamicChainManagers instance. The following configuration options are available for managerConfig:

DescriptionConfiguration option

This is the only option in the Kafka configuration for which
you must specify a value. You can either set it under

bootstrap.servers

managerConfig (to be used as the default for all consumers and
producers) or in the configuration of a specific consumer or
producer (which overrides any default given in the parent
chain manager).

When this option is set under managerConfig, it is used as the
default. It needs to be enclosed in quotation marks. Example:

bootstrap.servers: "localhost:62618"

Type: string.

Prefix for dynamic mapping. If the prefix ends with a colon
(:), it needs to be enclosed in quotation marks (see also "Using

channelPrefix

YAML configuration files" in Deploying and Managing Apama
Applications).

When the channel is mapped to a Kafka topic, the prefix is not
used. For example, if the prefix is "kafka:", then the channel
kafka:test/amaps to the Kafka topic test/a.

Type: string.

Default: "kafka:".

Keys and values of the consumer configuration options in
Kafka. See the Kafka documentation at https://

consumerConfig

kafka.apache.org/documentation/ for detailed information on
the consumer configs.

Some default values are provided by the Kafka transport, but
you can override them by specifying different values.

The default values are:

group.id: A unique identifier for every instance.

session.timeout.ms: "30000"

Connecting Apama Applications to External Components 10.11.3 159

9 The Kafka Transport Connectivity Plug-in

https://kafka.apache.org/documentation/
https://kafka.apache.org/documentation/

DescriptionConfiguration option

key.deserializer:
"org.apache.kafka.common.serialization.
StringDeserializer"

value.deserializer:
"org.apache.kafka.common.serialization.
StringDeserializer"

Type: map.

Keys and values of the producer configuration options in
Kafka. See the Kafka documentation at https://

producerConfig

kafka.apache.org/documentation/ for detailed information on
the producer configs.

Some default values are provided by the Kafka transport, but
you can override them by specifying different values.

The default values are:

linger.ms: 0

key.serializer:
"org.apache.kafka.common.serialization.
StringSerializer"

value.serializer:
"org.apache.kafka.common.serialization.
StringSerializer"

Type: map.

Kafka allows clients to connect over SSL. You use the consumerConfig and producerConfig
configuration options of the Kafka transport to specify the SSL configuration. See the Kafka
documentation at https://kafka.apache.org/ for detailed information on how to configure Kafka
clients to use SSL.

Configuring message transformations
(dynamicChains)
You configure exactly one dynamicChains section to handle transformingmessages from the Kafka
broker into the correlator, and vice versa. For example:
dynamicChains:
kafkaChain:

- apama.eventMap:
defaultEventType: Evt
suppressLoopback: true

- jsonCodec

160 Connecting Apama Applications to External Components 10.11.3

9 The Kafka Transport Connectivity Plug-in

https://kafka.apache.org/documentation/
https://kafka.apache.org/documentation/
https://kafka.apache.org/

- kafkaTransport

We recommend use of the suppressLoopback configuration property to prevent undesirable
behavior. See “Host plug-ins and configuration” on page 30 for further information.

Payload for the Kafka message
As with all other transports, the translation between EPL events and Kafka payloads is based on
the choice of host plug-in and codecs. See “Host plug-ins and configuration” on page 30 and
“Codec Connectivity Plug-ins” on page 209 for further information.

The default payload for the Kafka message is a string (with conversion from the underlying bytes
using the classes StringDeserializer and StringSerializer from the
org.apache.kafka.common.serialization package).

The following is a simple example of a YAML configuration file where the payload of the Kafka
message will be the string form of the Apama event:
dynamicChainManagers:
kafkaManager:

transport: kafkaTransport
managerConfig:

bootstrap.servers: "localhost:9092"

dynamicChains:
myChain:

- apama.eventString:
- kafkaTransport:

You can configure alternative serializers and deserializers using the consumerConfig and
producerConfig options of the Kafka connectivity plug-in (see also “Configuring the connection
to Kafka (dynamicChainManagers)” on page 158. You can use a third-party serializer/deserializer
implementation or you can create your own. You just need to include the relevant classes in the
same classpath of the Kafka plug-in itself so that it can locate them. See the Kafka documentation
for more information about Kafka serializers and deserializers. Additional transformations (for
example, from a string containing JSON to a map) can be performed after the Kafka transport
using connectivity codec plug-ins.

Metadata for the Kafka message
Messages going from/to the transport have useful pieces of information inserted into theirmetadata.
This information is stored as amap associatedwith the kafka key. Thismap contains the following
information:

DescriptionField

Contains the Kafka record key. This works in both directions. If a message
from Kafka has a key, then the metadata will contain it. If a message that

key

is being sent to Kafka has the key in the metadata, then the Kafka record
key will be set with it.

Connecting Apama Applications to External Components 10.11.3 161

9 The Kafka Transport Connectivity Plug-in

162 Connecting Apama Applications to External Components 10.11.3

9 The Kafka Transport Connectivity Plug-in

10 The Cumulocity IoT Transport Connectivity Plug-

in

■ About the Cumulocity IoT transport .. 164

■ Configuring the Cumulocity IoT transport ... 165

■ Loading the Cumulocity IoT transport .. 170

■ Using managed objects .. 171

■ Using alarms .. 175

■ Using events ... 179

■ Using measurements ... 183

■ Using measurement fragments .. 188

■ Using operations .. 191

■ Receiving update notifications .. 195

■ Paging Cumulocity IoT queries ... 197

■ Invoking other parts of the Cumulocity IoT REST API ... 199

■ Invoking microservices ... 200

■ Monitoring status for Cumulocity IoT .. 201

■ Finding tenant options .. 202

■ Getting user details .. 203

■ Sample EPL ... 204

Connecting Apama Applications to External Components 10.11.3 163

About the Cumulocity IoT transport
Cumulocity IoT is used for communicationwith connected IoT devices. See http://cumulocity.com/
for detailed information.

Apama provides a connectivity plug-in, the Cumulocity IoT transport, which allows you to
communicate with the IoT devices connected to Cumulocity IoT. For example, you can receive
events from the devices and send operations to the devices.

You configure the Cumulocity IoT connectivity plug-in by editing the .properties file that comes
with the Cumulocity Client connectivity bundle. See "Adding the Cumulocity IoT connectivity
plug-in to a project" in Using Apama with Software AG Designer for further information.

In addition to the Cumulocity Client connectivity bundle, the following EPL bundles are also
available (see also "Adding EPL bundles to projects" in Using Apama with Software AG Designer):

Event Definitions for Cumulocity. This EPL bundle defines all events that can be used for
interacting with Cumulocity IoT. This includes definitions for events that you receive from
Cumulocity IoT, events that you can send to Cumulocity IoT, and event APIs that you can use
for requesting data fromCumulocity IoT. Formore information, see the com.apama.cumulocity
package in the API Reference for EPL (ApamaDoc).

Utilities for Cumulocity. This EPL bundle contains useful utilities for EPL code that is
interacting with Cumulocity IoT. It also contains a geofence helper utility for determining
whether a location is part of a geofence or not. For more information, see the
com.apama.cumulocity.Util and the com.apama.cumulocity.GeoFenceContainer events in the
API Reference for EPL (ApamaDoc).

Note:
In addition to using Software AG Designer to add the above mentioned connectivity and EPL
bundles, you can also do this using the apama_project command-line tool. See "Creating and
managing an Apama project from the command line" in Deploying and Managing Apama
Applications for more information.

As with other connectivity plug-ins, the EPL application should call
com.softwareag.connectivity.ConnectivityPlugins.onApplicationInitialized(). For more
information, see “Sending and receiving events with connectivity plug-ins” on page 38.

The samples/cumulocity directory of your Apama installation includes samples which show how
to use the Cumulocity IoT transport. For more information, see the README.txt file in the
corresponding samples folder.

Note:
The Cumulocity IoT connectivity plug-in does not support reliable messaging.

164 Connecting Apama Applications to External Components 10.11.3

10 The Cumulocity IoT Transport Connectivity Plug-in

http://cumulocity.com/

Configuring the Cumulocity IoT transport
When you add theCumulocity Client connectivity bundle in SoftwareAGDesigner, a .properties
configuration file is created. You have to provide all required information in that file in order to
connect to Cumulocity IoT.

Note:
It is strongly recommended that you do not change the YAML configuration file which also
comes with the bundle. You should always set the properties in the .properties configuration
file, which defines the substitution variables to be used in the YAML configuration file.

The following is an example of a filled out .properties configuration file:
Username and password must be provided for authentication
CUMULOCITY_USERNAME=MYNAME
CUMULOCITY_PASSWORD=MYPW
Application key and the URL of the application
CUMULOCITY_APPKEY=MYAPP
CUMULOCITY_SERVER_URL=https://myserver.cumulocity.com
TLS certificate authority file
CUMULOCITY_AUTHORITY_FILE=
Allow connection to Cumulocity IoT instance with unknown certificate
CUMULOCITY_ALLOW_UNAUTHORIZED_SERVER=false
Set this to the tenant ID if you don't have a per-tenant hostname
CUMULOCITY_TENANT=
Set Cumulocity IoT measurement format
CUMULOCITY_MEASUREMENT_FORMAT=BOTH
CUMULOCITY_FORCE_INITIAL_HOST=true
Proxy server host and port to start using HTTP proxy
CUMULOCITY_PROXY_HOST=proxy_host
CUMULOCITY_PROXY_PORT=

Proxy username and password must be provided for basic authentication
CUMULOCITY_PROXY_USERNAME=ProxyUser
CUMULOCITY_PROXY_PASSWORD=ProxyPW

In order to connect to Cumulocity IoT, it is required that you set the following properties.

DescriptionProperty

Username for authentication. This can be specified
either as a username alone or in the form of

CUMULOCITY_USERNAME

tenantID/username. In recent versions of Cumulocity
IoT, the tenant ID is visible in the web applications in
the user menu in the top-right.

Type: string.

Password for authentication.CUMULOCITY_PASSWORD

Type: string.

Connecting Apama Applications to External Components 10.11.3 165

10 The Cumulocity IoT Transport Connectivity Plug-in

DescriptionProperty

Unique key for the application defined on the
Cumulocity IoT instance.

CUMULOCITY_APPKEY

The application key is defined in Cumulocity IoT. Log
in to your account in Cumulocity IoT, and use the
Administration application to add an external
application. You can then specify the application key
and the URL of the application. See the Cumulocity
IoT documentation at http://cumulocity.com/guides/
for more information.

Type: string.

URL of the Cumulocity IoT tenant.CUMULOCITY_SERVER_URL

Type: string.

Under normal conditions in the cloud, the above properties are all you need to set. The properties
listed below may be useful for custom on-premises installations of Cumulocity IoT or for
Cumulocity IoT Edge.

DescriptionProperty

The TLS certificate authority file. If you are using your
own server and it is not signed by a trusted Certificate

CUMULOCITY_AUTHORITY_FILE

Authority (CA), provide the certificate of your signing
authority here.

Type: string.

Set this to truewhen the user is connecting to a
Cumulocity IoT platform whose certificate is not

CUMULOCITY_ALLOW_UNAUTHORIZED_SERVER

signed by a trusted CA authority. This generally
happens in the Cumulocity IoT Edge instance where
the installation is using a self-signed certificate.

Default: false.

Unique name of the application tenant. This
configuration option is useful in the case ofCumulocity
IoT Edge.

CUMULOCITY_TENANT

Type: string.

The measurement format mode used by the tenant.
Twomodes are available: MEASUREMENT_ONLY and BOTH.

CUMULOCITY_MEASUREMENT_FORMAT

For more information, see “Turning measurement
fragments on/off” on page 190.

Type: string.

166 Connecting Apama Applications to External Components 10.11.3

10 The Cumulocity IoT Transport Connectivity Plug-in

http://cumulocity.com/guides/

DescriptionProperty

Default: BOTH.

If set to false, the endpoint details returned by the
Cumulocity IoT platform are used. If set to true, the

CUMULOCITY_FORCE_INITIAL_HOST

Cumulocity IoT SDK always uses the URL provided
during session initialization instead of the endpoint
details. This is helpful in deployment scenarios where
the Cumulocity IoT instance is reachable only with an
IP address.

Type: boolean.

Default: true.

The name of the proxy server to connect to.CUMULOCITY_PROXY_HOST

Type: string.

The port number of the proxy server to connect to.CUMULOCITY_PROXY_PORT

Both host and port are required to enable an HTTP
proxy.

Type: integer.

Optional proxy user name for HTTP basic
authentication.

CUMULOCITY_PROXY_USERNAME

Type: string.

Optional proxy password for HTTP basic
authentication.

CUMULOCITY_PROXY_PASSWORD

Provide both user name and password if the proxy
server has basic authentication enabled.

Type: string.

The following properties are not provided by default in the .properties configuration file. If you
add them, they will be used.

DescriptionProperty

The initial delay (in seconds) that can be
set for querying tenant subscriptions.

CUMULOCITY_INITIAL_DELAY_SECS

Type: float.

Default: 0 seconds.

Connecting Apama Applications to External Components 10.11.3 167

10 The Cumulocity IoT Transport Connectivity Plug-in

DescriptionProperty

The maximum number of Apama events
that can be batched as a single request

CUMULOCITY_MAX_BATCH_SIZE

before sending toCumulocity IoT. The only
event type that supports batching is
com.apama.cumulocity.Measurement.

Type: integer.

Default: 1000.

Update the mostRecentSlowRequestDetails
status (see “Monitoring status for

CUMULOCITY_LATENCY_SLOW_THRESHOLD_SECS

Cumulocity IoT” on page 201) if the time
for fetching one page of response
multiplied by the number of total pages is
greater than this threshold.

Set this to 0 to disable updates.

Type: integer.

Default: 1 second.

Log a warning if a single-paged or
multi-paged request takes more time to
complete than defined by this threshold.

CUMULOCITY_LATENCY_LOG_THRESHOLD_SECS

Set this to 0 to disable logging.

Type: integer.

Default: 10 seconds.

Log a warning if a batch of requests takes
more time to complete than defined by this

CUMULOCITY_LATENCY_BATCH_THRESHOLD_SECS

threshold. If a warning for an individual
request of the batch has already been
logged with
CUMULOCITY_LATENCY_LOG_THRESHOLD_SECS,
then a warning for this batch is not logged.

Set this to 0 to disable logging.

Type: integer.

Default: 50 seconds.

The sender name to be used as the default
if it is not specified in the SendSMS event and

CUMULOCITY_SMS_SENDER_NAME

not configured in the

168 Connecting Apama Applications to External Components 10.11.3

10 The Cumulocity IoT Transport Connectivity Plug-in

DescriptionProperty

messaging/sms.senderName tenant option
of Cumulocity IoT.

The tenant option is given preference over
the value of CUMULOCITY_SMS_SENDER_NAME.
The tenant option is checked for every
SendSMS event. If the check does not find it
in Cumulocity IoT, then only the value of
CUMULOCITY_SMS_SENDER_NAME is used as the
default sender name.

Type: string.

Default: Apama.

The sender address to be used as the
default if it is not specified in the SendSMS

CUMULOCITY_SMS_SENDER_ADDRESS

event and not configured in the
messaging/sms.senderAddress tenant option
of Cumulocity IoT.

The tenant option is given preference over
the value of
CUMULOCITY_SMS_SENDER_ADDRESS. The tenant
option is checked for every SendSMS event.
If the check does not find it in Cumulocity
IoT, then only the value of
CUMULOCITY_SMS_SENDER_ADDRESS is used as
the default sender address.

You can provide a sender address in the
following formats: PROTOCOL:NUMBER or just
NUMBER. Valid protocols include tel, SHORT,
ICCID and ACR. If the protocol is missing or
invalid, tel is used as the default protocol.

Type: string.

Default: apama.

For advanced use cases, it is possible to edit the following configuration options directly in the
YAML configuration file. There are no corresponding entries in the .properties file.

DescriptionConfiguration option

Deprecated. Request all assets at startup.requestAllDevices

Type: boolean.

Connecting Apama Applications to External Components 10.11.3 169

10 The Cumulocity IoT Transport Connectivity Plug-in

DescriptionConfiguration option

Default: true.

Note:
requestAllDevices is set to false in the YAML
configuration file. You should explicitly request for
all available devices on startup using the
com.apama.cumulocity.FindManagedObjectAPI. For
more information, see “Sample EPL” on page 204.

Subscribe to measurements, events and alarms of all
devices during startup.

subscribeToAllMeasurements

Type: boolean.

Default: true.

Subscribe to all device-related updates.subscribeToDevices

Type: boolean.

Default: true.

Subscribe to all device operations.subscribeToOperations

Type: boolean.

Default: false.

Note:
subscribeToOperations is set to false by default
when it is not explicitly specified in the YAML
configuration file. However, for your convenience,
when you add a new Cumulocity Client
connectivity bundle in Software AGDesigner or by
using the apama_project tool, this option is already
set to true in the resulting YAML configuration file.

See also “Receiving update notifications” on page 195.

Loading the Cumulocity IoT transport
You can load the Cumulocity IoT transport by adding the Cumulocity Client bundle to your
project in SoftwareAGDesigner (see "Adding the Cumulocity IoT connectivity plug-in to a project"
in Using Apama with Software AG Designer). Alternatively, you can load the transport with the
following connectivityPlugins stanza in your YAML configuration file:
cumulocityTransport:

classpath: ${APAMA_HOME}/lib/cumulocity/connectivity-cumulocity.jar
class: com.apama.cumulocity.Transport

170 Connecting Apama Applications to External Components 10.11.3

10 The Cumulocity IoT Transport Connectivity Plug-in

cumulocityCodec:
libraryName: connectivity-cumulocity-codec
class: CumulocityCodec

Using managed objects
During application initialization (onApplicationInitialized), if the requestAllDevices configuration
option is enabled, the adapter sends all device/asset related information using the
com.apama.cumulocity.ManagedObject event on the
com.apama.cumulocity.ManagedObject.SUBSCRIBE_CHANNEL (same as cumulocity.devices) channel.
After all devices/assets have been sent, the adapter sends a
com.apama.cumulocity.RequestAllDevicesComplete(-1) event.

Note:
Use of the above-mentioned requestAllDevices configuration option is deprecated. Instead you
should use the com.apama.cumulocity.FindManagedObject API to cause the adapter to send the
device events when the application is ready. This will also work for applications deployed in
Cumulocity IoT directly.

Example of a device event:
com.apama.cumulocity.ManagedObject("44578836","","Device_1",
["c8y_Restart","c8y_Meassage","c8y_Relay"],
["c8y_TemperatureMeasurement","c8y_LightMeasurement"],
[],[],[],[],{},
{"c8y_IsDevice":any(dictionary<any,any>,new dictionary<any,any>),
"owner":any(string,"Cumulocity_User")})

If the subscribeToDevices configuration option is enabled (true by default), any devices added to
Cumulocity IoT after application initialization will be sent to the
com.apama.cumulocity.ManagedObject.SUBSCRIBE_CHANNEL channel.

To fetch a list of all existing managed objects, use the FindManagedObjects API. For more
information, see “Querying for managed objects” on page 173.

Example

The following is a simple example of how to receive, update and send managed objects:
// Subscribe to receive all the devices from Cumulocity IoT
monitor.subscribe(ManagedObject.SUBSCRIBE_CHANNEL);

// Consume all the devices from Cumulocity IoT
on all ManagedObject() as mo {
log mo.toString() at INFO;

// Update a managed object

mo.params.add("CustomMetadata", {"metadata": "Adding custom data"});
send mo to ManagedObject.SEND_CHANNEL;

}

Connecting Apama Applications to External Components 10.11.3 171

10 The Cumulocity IoT Transport Connectivity Plug-in

Updating a managed object
To enable use cases where information related to a managed object can be persisted, you can
update any metadata information (such as the state) as properties of a managed object.
managedObject.params.add("<CUSTOM_PROPERTY>", <PROPERTY_VALUE>);
send managedObject to com.apama.cumulocity.ManagedObject.SEND_CHANNEL

Where

<CUSTOM_PROPERTY> is the property that is to be added.

<PROPERTY_VALUE> is the value for the newly added property.

Sending managed objects requesting response and setting headers

When creating a new object or updating an existing one, it is recommended that you use the
withChannelResponse action. This allows your application to receive a response on completion on
the ManagedObject.SUBSCRIBE_CHANNEL channel. You will need to subscribe to the
ManagedObject.SUBSCRIBE_CHANNEL channel first. The response can be one of two possibilities:

ObjectCommitted

This includes the reqIdwhich is the identifier of the original request, the Idwhich is the
identifier of the newly created or updated object, and the actual object in JSON form.

ObjectCommitFailed

This includes the reqIdwhich is the identifier of the original request, the statusCodewhich is
the HTTP status code of the failure, and the bodywhich is the content of the response from the
API (this might be in HTML format).

When using withChannelResponse, it allows the ability to set headers. This can be used, for example,
to determine what processing mode Cumulocity IoT will use as shown in the example below.

Example of creating a managed object:
using com.apama.cumulocity.ManagedObject;
using com.apama.cumulocity.ObjectCommitFailed;
using com.apama.cumulocity.ObjectCommitted;

monitor Test_ManagedObjects {

action onload {
monitor.subscribe(ManagedObject.SUBSCRIBE_CHANNEL);
ManagedObject mo := new ManagedObject;
mo.params.add("c8y_IsDevice", new dictionary<any, any>);
mo.name := "MyManagedObject";

mo.type := "DeviceType";
integer reqId := com.apama.cumulocity.Util.generateReqId();

// Create a new ManagedObject in Cumulocity, ensuring that a
// response is returned.
send mo.withChannelResponse(reqId, new dictionary<string, string>) to

172 Connecting Apama Applications to External Components 10.11.3

10 The Cumulocity IoT Transport Connectivity Plug-in

ManagedObject.SEND_CHANNEL;

// If the ManagedObject creation succeeded do something with the
// returned object or id.
on ObjectCommitted(reqId=reqId) as c and not
ObjectCommitFailed(reqId=reqId){

log "New managed object successfully created " + c.toString()
at INFO;

}

// If the ManagedObject creation failed, log an error.
on ObjectCommitFailed(reqId=reqId) as cfail and not
ObjectCommitted(reqId=reqId){

log "Creating a new event failed " + cfail.toString() at ERROR;
}

}
}

Note:
The following ManagedObject reference fields cannot be set using ManagedObject events and are
useful for read-only purposes in these events: childDeviceIds, childAssetIds, deviceParentIds,
and assetParentIds. However, these fields can be set using the Cumulocity IoT RESTAPIwhich
can be invoked in EPL by using GenericRequest events. For more information, see “ Invoking
other parts of theCumulocity IoTRESTAPI” onpage 199 and the information on child operations
in the Cumulocity IoT OpenAPI documentation (https://cumulocity.com/api/#tag/Child-
operations).

Querying for managed objects
To search for a managed object or a collection of managed objects, send the
com.apama.cumulocity.FindManagedObject event to Cumulocity IoT, with a unique reqId to the
com.apama.cumulocity.FindManagedObject.SEND_CHANNEL channel.

The transport will then respond with zero or more
com.apama.cumulocity.FindManagedObjectResponse events and then one
com.apama.cumulocity.FindManagedObjectResponseAck event on the
com.apama.cumulocity.FindManagedObjectResponse.SUBSCRIBE_CHANNEL channel.

Example:
integer reqId := com.apama.cumulocity.Util.generateReqId();

com.apama.cumulocity.FindManagedObject request :=
new com.apama.cumulocity.FindManagedObject;

request.reqId := reqId;

// Optionally provide the 'id' of the managed object
//request.deviceId := "<DEVICE_ID>";

// Filter based on fragmentType
request.params.add("fragmentType", "c8y_IsDevice");

// Subscribe to com.apama.cumulocity.FindManagedObjectResponse.SUBSCRIBE_CHANNEL to
// listen for responses
monitor.subscribe(com.apama.cumulocity.FindManagedObjectResponse.SUBSCRIBE_CHANNEL);

Connecting Apama Applications to External Components 10.11.3 173

10 The Cumulocity IoT Transport Connectivity Plug-in

https://cumulocity.com/api/#tag/Child-operations
https://cumulocity.com/api/#tag/Child-operations

// Listen for responses based on reqId
on all com.apama.cumulocity.FindManagedObjectResponse(reqId=reqId) as response
// Avoid listener leaks by terminating the listener on completion of the request
and not com.apama.cumulocity.FindManagedObjectResponseAck(reqId=reqId)
{

log "Received ManagedObject " + response.toString() at INFO;
}

// Listen for com.apama.cumulocity.FindManagedObjectResponseAck,
// this indicates that all responses have been received
on com.apama.cumulocity.FindManagedObjectResponseAck(reqId=reqId)
as requestCompleted

{
log "Received all ManagedObject(s) for request "

+ requestCompleted.reqId.toString() at INFO;

// Request is completed and we can unsubscribe from this channel

monitor.unsubscribe(com.apama.cumulocity.FindManagedObjectResponse.SUBSCRIBE_CHANNEL);
}

// Send request to find available managed objects
send request to com.apama.cumulocity.FindManagedObject.SEND_CHANNEL;

Supported query parameters

You can provide the following query parameters with the request:

DescriptionParameter

Search for a managed object based on deviceId. When deviceId is
populated in a FindManagedObject request, all the query parameters listed
below are ignored.

deviceId

Search for managed objects based on the fragment type.fragmentType

Search for managed objects based on the type.type

Search for managed objects based on the owner.owner

Search for managed objects based on the text.text

Search for managed objects based on the asset identifier of the child.childAssetId

Search for managed objects based on the device identifier of the child.childDeviceId

Search for managed objects based a comma-separated list of device
identifiers.

ids

Indicates how many entries of the collection are to be retrieved from
Cumulocity IoT. This is a batching parameter for getting multiple

pageSize

responses from Cumulocity IoT. A larger pageSize does fewer requests
to Cumulocity IoT to retrieve all the managed objects, but each request

174 Connecting Apama Applications to External Components 10.11.3

10 The Cumulocity IoT Transport Connectivity Plug-in

DescriptionParameter

is larger. By default, 1000 managed objects are in each page and there is
an upper limit of 2000.

Retrieve a specific page of results for the given pageSize. If currentPage
is set, then only a single page is requested. If currentPage is not set
(default), all the pages are requested.

currentPage

For a comprehensive list of allowed query parameters, see the Cumulocity IoT OpenAPI
Specification at https://cumulocity.com/api/#operation/getManagedObjectCollectionResource.

Query result paging

Cumulocity IoT queries support paging of data for requesting a specific range of the responses
received. For more information, see “Paging Cumulocity IoT queries” on page 197.

Using alarms
The com.apama.cumulocity.Alarm is sent on an alarm from a device. This event is sent to the
com.apama.cumulocity.Alarm.SUBSCRIBE_CHANNEL (same as cumulocity.alarms) channel. This event
contains the identifier of the source, a timestamp (same form as currentTime), message text, and
optional parameters.

Example of an alarm:
com.apama.cumulocity.Alarm("44578840","c8y_UnavailabilityAlarm","44578839",
1529496204.346,"No data received from device within required interval",
"ACTIVE","MAJOR",1,{"creationTime":any(float,1529496204.067)})

Example

The following is a simple example of how to receive, update, create and send alarms:
// Subscribe to receive all the alarms published from Cumulocity IoT
monitor.subscribe(Alarm.SUBSCRIBE_CHANNEL);

// Consume all the alarms from Cumulocity IoT
on all Alarm() as alarm {
log alarm.toString() at INFO;

// Example for updating an alarm

// Set alarm severity to MAJOR
alarm.severity := "MAJOR";
send alarm to Alarm.SEND_CHANNEL;

}
// Create a new alarm
Alarm alarm := new Alarm;
alarm.source := "<MANAGED_OBJECT_ID>";
alarm.type := "TestAlarm";
alarm.severity := "MINOR";

Connecting Apama Applications to External Components 10.11.3 175

10 The Cumulocity IoT Transport Connectivity Plug-in

https://cumulocity.com/api/#operation/getManagedObjectCollectionResource

alarm.status := "ACTIVE";
alarm.time := currentTime;
alarm.text := "This is a sample alarm";
send alarm to Alarm.SEND_CHANNEL;

Creating a new alarm
send Alarm("","c8y_SampleAlarm","<SOURCE>",<TIME>,
"Alarm text", "<STATUS>","<SEVERITY>",1,new dictionary<string,any>) to

Alarm.SEND_CHANNEL;

Where

<SOURCE> is the source of the alarm (same as the ManagedObject identifier).

<TIME> is the time at which the alarm was generated.

<STATUS> is the status of the alarm. This can be ACTIVE, ACKNOWLEDGED or CLEARED.

<SEVERITY> is the severity of the alarm. This can be CRITICAL, MAJOR, MINOR or WARNING.

Sending alarms requesting response and setting headers

When creating a new object or updating an existing one, it is recommended that you use the
withChannelResponse action. This allows your application to receive a response on completion on
the Alarm.SUBSCRIBE_CHANNEL channel. You will need to subscribe to the
Alarm.SUBSCRIBE_CHANNEL channel first. The response can be one of two possibilities:

ObjectCommitted

This includes the reqIdwhich is the identifier of the original request, the Idwhich is the
identifier of the newly created or updated object, and the actual object in JSON form.

ObjectCommitFailed

This includes the reqIdwhich is the identifier of the original request, the statusCodewhich is
the HTTP status code of the failure, and the bodywhich is the content of the response from the
API (this might be in HTML format).

When using withChannelResponse, it allows the ability to set headers. This can be used, for example,
to determine what processing mode Cumulocity IoT will use as shown in the example below.

Example of creating an alarm:
using com.apama.cumulocity.Alarm;
using com.apama.cumulocity.ObjectCommitFailed;
using com.apama.cumulocity.ObjectCommitted;

monitor TestCreatingAlarm {
string deviceId; // Where this is populated from the actual device Id.
string timestamp; // Where this is populated from the timestamp of

// the device.

action onload {
monitor.subscribe(Alarm.SUBSCRIBE_CHANNEL);

176 Connecting Apama Applications to External Components 10.11.3

10 The Cumulocity IoT Transport Connectivity Plug-in

Alarm al := new Alarm;
string name := "MyTestAlarm";
al.status := "ACTIVE";
al.severity := "CRITICAL";
al.source := deviceId;
al.type := "c8y_TestAlarm";
al.text := "test alarm";
al.time := currentTime;

integer reqId := com.apama.cumulocity.Util.generateReqId();

// Create a new Alarm in Cumulocity, ensuring that a response is
// returned
// and the processing mode, indicating how to process the request,
// sent to Cumulocity is Transient.
send al.withChannelResponse(reqId, { "X-Cumulocity-Processing-Mode":
"Transient" }) to Alarm.SEND_CHANNEL;

// If the Alarm creation succeeded do something with the returned
// object or id.
on ObjectCommitted(reqId=reqId) as c and not
ObjectCommitFailed(reqId=reqId){

log "New alarm successfully created " + c.toString() at INFO;
}

// If the Alarm creation failed, log an error.
on ObjectCommitFailed(reqId=reqId) as cfail and not
ObjectCommitted(reqId=reqId){

log "Creating a new event failed " + cfail.toString() at ERROR;
}

}
}

Alarm de-duplication

If an active or acknowledged alarm (does not work for the CLEARED status) with the same source
and type exists, no new alarm is created. Instead, the existing alarm is updated by incrementing
the count property, and the time property is also updated. Any other changes are ignored, and
the alarm history is not updated. The first occurrence of the alarm is recorded in
firstOccurenceTime.

Updating an existing alarm
You can update the text, status and severity fields.
send Alarm("<ALARM_ID>","c8y_SampleAlarm","<SOURCE>",<TIME>,
"Alarm Updated", "<STATUS>","<SEVERITY>",1,new dictionary<string,any>) to

Alarm.SEND_CHANNEL;

Where

<ALARM_ID> is the identifier of the previously created alarm. The presence of <ALARM_ID> indicates
that the request is for updating an existing alarm.

Connecting Apama Applications to External Components 10.11.3 177

10 The Cumulocity IoT Transport Connectivity Plug-in

Querying for alarms
To search for an alarm or a collection of alarms, send the com.apama.cumulocity.FindAlarm event
to Cumulocity IoT, with a unique reqId to the com.apama.cumulocity.FindAlarm.SEND_CHANNEL
channel.

The transport will then respond with zero or more com.apama.cumulocity.FindAlarmResponse
events and then one com.apama.cumulocity.FindAlarmResponseAck event on the
com.apama.cumulocity.FindAlarmResponse.SUBSCRIBE_CHANNEL channel.

Example:
integer reqId := com.apama.cumulocity.Util.generateReqId();

com.apama.cumulocity.FindAlarm request := new com.apama.cumulocity.FindAlarm;
request.reqId := reqId;

// Filter based on alarms type
request.params.add("type", "c8y_UnavailabilityAlarm");

// Subscribe to com.apama.cumulocity.FindAlarmResponse.SUBSCRIBE_CHANNEL to listen
// for responses
monitor.subscribe(com.apama.cumulocity.FindAlarmResponse.SUBSCRIBE_CHANNEL);

// Listen for responses based on reqId
on all com.apama.cumulocity.FindAlarmResponse(reqId=reqId) as response
// Avoid listener leaks by terminating the listener on completion of the request
and not com.apama.cumulocity.FindAlarmResponseAck(reqId=reqId)
{

log "Received Alarm " + response.toString() at INFO;
}

// Listen for com.apama.cumulocity.FindAlarmResponseAck,
// this indicates that all responses have been received
on com.apama.cumulocity.FindAlarmResponseAck(reqId=reqId) as requestCompleted
{

log "Received all Alarm(s) for request " +
requestCompleted.reqId.toString() at INFO;

// Request is completed and we can unsubscribe from this channel
monitor.unsubscribe(com.apama.cumulocity.FindAlarmResponse.SUBSCRIBE_CHANNEL);

}

// Send request to find available alarms
send request to com.apama.cumulocity.FindAlarm.SEND_CHANNEL;

Supported query parameters

You can provide the following query parameters with the request:

DescriptionParameter

Search for an alarm based on alarmId. When searching for an alarm based
on Id, all the query parameters listed below are ignored.

id

178 Connecting Apama Applications to External Components 10.11.3

10 The Cumulocity IoT Transport Connectivity Plug-in

DescriptionParameter

Search for alarms based on the device identifier or asset identifier of the
source.

source

Search for alarms based on the status. The status can be any of ACTIVE,
ACKNOWLEDGED or CLEARED.

status

Search for alarms based on the severity. The severity can be any of CRITICAL,
MAJOR, MINOR or WARNING.

severity

Search for alarms based on the type.type

Search for alarms from a start date. The date and time is provided as seconds
since the epoch.

fromDate

Search for alarms within a time range. This is to be used in combination
with fromDate. The date and time is provided as seconds since the epoch.

toDate

A boolean parameter used for filtering, based on the resolved state.resolved

Indicates how many entries of the collection are to be retrieved from
Cumulocity IoT. This is a batching parameter for gettingmultiple responses

pageSize

fromCumulocity IoT. A larger pageSize does fewer requests to Cumulocity
IoT to retrieve all the alarms, but each request is larger. By default, 1000
alarms are in each page and there is an upper limit of 2000.

Retrieve a specific page of results for the given pageSize. If currentPage is
set, then only a single page is requested. If currentPage is not set (default),
all the pages are requested.

currentPage

Query result paging

Cumulocity IoT queries support paging of data for requesting a specific range of the responses
received. For more information, see “Paging Cumulocity IoT queries” on page 197.

Using events
The com.apama.cumulocity.Event is sent on an event from a device. This event is sent to the
com.apama.cumulocity.Event.SUBSCRIBE_CHANNEL (same as cumulocity.events) channel. This event
contains the identifier of the source, a timestamp (same form as currentTime), message text, and
optional parameters.

Example of an event:
com.apama.cumulocity.Event("48073557","c8y_EntranceEvent",
"12346082",1519838833.6,
"Entrance event triggered.",
{"creationTime":any(float,1519838834.706)})

Connecting Apama Applications to External Components 10.11.3 179

10 The Cumulocity IoT Transport Connectivity Plug-in

Example

The following is a simple example of how to receive, update, create and send events:
// Subscribe to receive all the events published from Cumulocity IoT
monitor.subscribe(Event.SUBSCRIBE_CHANNEL);

// Consume all the events from Cumulocity IoT
on all Event() as e {
log e.toString() at INFO;

// Example for updating an event

// Update text
e.text := "This is an updated text";
send e to Event.SEND_CHANNEL;

}

// Create a new event
Event evt := new Event;
evt.source := "<MANAGED_OBJECT_ID>";
evt.type := "TestEvent";
evt.time := currentTime;
evt.text := "This is a sample event";
send evt to Event.SEND_CHANNEL;

Creating a new event
send Event("","c8y_SampleEvent","<SOURCE>", <TIME>,

"Event text",new dictionary<string,any>) to Event.SEND_CHANNEL;

Where

<SOURCE> is the source of the event (same as the ManagedObject identifier).

<TIME> is the time at which the event was generated.

Sending events requesting response and setting headers

When creating a new object or updating an existing one, it is recommended that you use the
withChannelResponse action. This allows your application to receive a response on completion on
the Event.SUBSCRIBE_CHANNEL channel. You will need to subscribe to the
Event.SUBSCRIBE_CHANNEL channel first. The response can be one of two possibilities:

ObjectCommitted

This includes the reqIdwhich is the identifier of the original request, the Idwhich is the
identifier of the newly created or updated object, and the actual object in JSON form.

ObjectCommitFailed

This includes the reqIdwhich is the identifier of the original request, the statusCodewhich is
the HTTP status code of the failure, and the bodywhich is the content of the response from the
API (this might be in HTML format).

180 Connecting Apama Applications to External Components 10.11.3

10 The Cumulocity IoT Transport Connectivity Plug-in

When using withChannelResponse, it allows the ability to set headers. This can be used, for example,
to determine what processing mode Cumulocity IoT will use as shown in the example below.

Example of creating an event:
using com.apama.cumulocity.Event;
using com.apama.cumulocity.ObjectCommitFailed;
using com.apama.cumulocity.ObjectCommitted;

monitor Test_CumulocityEvents {
string timestamp; // Where this is populated from the timestamp of the

// device.

action onload {
monitor.subscribe(Event.SUBSCRIBE_CHANNEL);
Event ev := new Event;
string name := "MyEvent";
ev.type := "DoorSensor";
ev.source := "7104838";
ev.text := "Door sensor was triggered";
ev.time := currentTime;

integer reqId := com.apama.cumulocity.Util.generateReqId();
// Create a new Event in Cumulocity, ensuring that a response is
// returned
// and the processing mode, indicating how to process the request, sent
// to Cumulocity is Transient.
send ev.withChannelResponse(reqId, { "X-Cumulocity-Processing-Mode":
"Transient" }) to Event.SEND_CHANNEL;

// If the Event creation succeeded do something with the returned
// object or id.
on ObjectCommitted(reqId=reqId) as c and not
ObjectCommitFailed(reqId=reqId){

log "New event successfully created " + c.toString() at INFO;
}

// If the Event creation failed, log an error.
on ObjectCommitFailed(reqId=reqId) as cfail and not
ObjectCommitted(reqId=reqId){

log "Creating a new event failed " + cfail.toString() at ERROR;
}

}
}

Updating an existing event
You can update the text field.
send Event("<EVENT_ID>","c8y_SampleEvent","<SOURCE>",<TIME>,
"Event Updated",new dictionary<string,any>) to Event.SEND_CHANNEL;

Where

<EVENT_ID> is the identifier of the previously created event. The presence of <EVENT_ID> indicates
that the request is for updating an existing event.

Connecting Apama Applications to External Components 10.11.3 181

10 The Cumulocity IoT Transport Connectivity Plug-in

Querying for events
To search for an event or a collection of events, send the com.apama.cumulocity.FindEvent event
to Cumulocity IoT, with a unique reqId to the com.apama.cumulocity.FindEvent.SEND_CHANNEL
channel.

The transport will then respond with zero or more com.apama.cumulocity.FindEventResponse
events and then one com.apama.cumulocity.FindEventResponseAck event on the
com.apama.cumulocity.FindEventResponse.SUBSCRIBE_CHANNEL channel.

Example:
integer reqId := com.apama.cumulocity.Util.generateReqId();

com.apama.cumulocity.FindEvent request := new com.apama.cumulocity.FindEvent;
request.reqId := reqId;

// Filter based on event type
request.params.add("type", "c8y_DoorOpenedEvent");

// Subscribe to com.apama.cumulocity.FindEventResponse.SUBSCRIBE_CHANNEL to listen
// for responses
monitor.subscribe(com.apama.cumulocity.FindEventResponse.SUBSCRIBE_CHANNEL);

// Listen for responses based on reqId
on all com.apama.cumulocity.FindEventResponse(reqId=reqId) as response
// Avoid listener leaks by terminating the listener on completion of the request
and not com.apama.cumulocity.FindEventResponseAck(reqId=reqId)
{

log "Received Event " + response.toString() at INFO;
}

// Listen for com.apama.cumulocity.FindEventResponseAck,
// this indicates that all responses have been received
on com.apama.cumulocity.FindEventResponseAck(reqId=reqId) as requestCompleted
{

log "Received all Event(s) for request " +
requestCompleted.reqId.toString() at INFO;

// Request is completed and we can unsubscribe from this channel
monitor.unsubscribe(com.apama.cumulocity.FindEventResponse.SUBSCRIBE_CHANNEL);

}

// Send request to find available events
send request to com.apama.cumulocity.FindEvent.SEND_CHANNEL;

Supported query parameters

You can provide the following query parameters with the request:

DescriptionParameter

Search for an event based on eventId. When searching for an event based
on Id, all the query parameters listed below are ignored.

id

182 Connecting Apama Applications to External Components 10.11.3

10 The Cumulocity IoT Transport Connectivity Plug-in

DescriptionParameter

Search for events based on the device identifier or asset identifier of the
source.

source

Search for events based on the type.type

Search for events from a start date. The date and time is provided as
seconds since the epoch.

fromDate

Search for events within a time range. This is to be used in combination
with fromDate. The date and time is provided as seconds since the epoch.

toDate

Similar to fromDate, but fetches the events based on the creation date. The
date and time is provided as seconds since the epoch.

fromCreationDate

Search for events that have been created within a date range. This is to
be used in combination with fromCreationDate. The date and time is
provided as seconds since the epoch.

toCreationDate

Indicates how many entries of the collection are to be retrieved from
Cumulocity IoT. This is a batching parameter for getting multiple

pageSize

responses from Cumulocity IoT. A larger pageSize does fewer requests
to Cumulocity IoT to retrieve all the events, but each request is larger. By
default, 1000 events are in each page and there is an upper limit of 2000.

Retrieve a specific page of results for the given pageSize. If currentPage
is set, then only a single page is requested. If currentPage is not set
(default), all the pages are requested.

currentPage

Boolean parameter. If a range query is used (that is, the query includes
at least one of the fromDate or toDate parameters), you can reverse the

revert

order in which the matching events are returned by adding the query
parameter revert=true. This returns the oldest events first. By default,
Cumulocity IoT returns the latest events first.

Query result paging

Cumulocity IoT queries support paging of data for requesting a specific range of the responses
received. For more information, see “Paging Cumulocity IoT queries” on page 197.

Using measurements
During application initialization (onApplicationInitialized), if subscribeToAllMeasurements is
enabled (true by default), the adapter sends all measurements using the
com.apama.cumulocity.Measurement event on the
com.apama.cumulocity.Measurement.SUBSCRIBE_CHANNEL (same as cumulocity.measurements)
channel.

Connecting Apama Applications to External Components 10.11.3 183

10 The Cumulocity IoT Transport Connectivity Plug-in

These events may be sent before all assets are sent. Measurement events contain the identifier of
the source of the measurement, the type of measurement, timestamp, and a dictionary of values
which contain the numeric value, units and optional type, quantity and state.

Examples of measurement events:
Measurement("1001","c8y_LightMeasurement","12346081",1464359004.89,
{"c8y_LightMeasurement": {"e":com.apama.cumulocity.MeasurementValue(108.1,
"lux", new dictionary<string, any>)}},new dictionary<string, any>)

Measurement("1002","c8y_DistanceMeasurement","12346082",1464359005.396,
{"c8y_DistanceMeasurement": {"distance":com.apama.cumulocity.MeasurementValue
(344,"mm","","","", dictionary<string, any>)}}, dictionary<string, any>)

Example

The following is a simple example of how to receive, create and send measurements:
// Subscribe to receive all the measurements published from Cumulocity IoT
monitor.subscribe(Measurement.SUBSCRIBE_CHANNEL);

// Consume all the measurements from Cumulocity IoT
on all Measurement() as m {
log m.toString() at INFO;

}

// Create a new measurement

Measurement m := new Measurement;
m.source := "<MANAGED_OBJECT_ID>";
m.time := currentTime;
m.type := "TemperatureMeasurement";
MeasurementValue mv := new MeasurementValue;
mv.value := 100.0;
dictionary<string, MeasurementValue> fragment
:= new dictionary<string, MeasurementValue>;

fragment.add("temperature", mv);
m.measurements.add("TemperatureMeasurement", fragment);
send m to Measurement.SEND_CHANNEL;

Creating a new measurement
Measurement m := new Measurement;
m.type := <MEASUREMENT_TYPE>;
m.source := <SOURCE>;
m.time := currentTime;
MeasurementValue mv := new MeasurementValue;
mv.value := 1.0;
mv.unit := "V";
dictionary<string, MeasurementValue> dict := {"voltage": mv};
m.measurements.add(m.type, dict);
send m to Measurement.SEND_CHANNEL;

Where

<SOURCE> is the source of the measurement (same as the ManagedObject identifier).

184 Connecting Apama Applications to External Components 10.11.3

10 The Cumulocity IoT Transport Connectivity Plug-in

<MEASUREMENT_TYPE> is the type of the measurement. For example, c8y_VoltageMeasurement.

Sending measurements requesting response and setting headers

When creating a new object, it is recommended that you use the withChannelResponse action. This
allows your application to receive a response on completion on the
Measurement.SUBSCRIBE_CHANNEL channel. You will need to subscribe to the
Measurement.SUBSCRIBE_CHANNEL channel first. The response can be one of two possibilities:

ObjectCommitted

This includes the reqIdwhich is the identifier of the original request, the Idwhich is the
identifier of the newly created or updated object, and the actual object in JSON form.

ObjectCommitFailed

This includes the reqIdwhich is the identifier of the original request, the statusCodewhich is
the HTTP status code of the failure, and the bodywhich is the content of the response from the
API (this might be in HTML format).

When using withChannelResponse, it allows the ability to set headers. This can be used, for example,
to determine what processing mode Cumulocity IoT will use as shown in the example below.

It is worth noting that when using withChannelResponse formeasurements, it is not able to achieve
the same throughput as sending them without a response. As they are not batched into a single
HTTP request, there are just individual create/update requests sent to Cumulocity IoT.

Example of creating a measurement:
using com.apama.cumulocity.Measurement;
using com.apama.cumulocity.MeasurementValue;

using com.apama.cumulocity.ObjectCommitFailed;
using com.apama.cumulocity.ObjectCommitted;

monitor Test {
string deviceId; // Where this is populated from the actual device Id.
float timestamp; // Where this is populated from the timestamp of the

// device.

action onload {

monitor.subscribe(Measurement.SUBSCRIBE_CHANNEL);
Measurement mo := new Measurement;
mo.type := "test_measurement";
mo.source := deviceId;
mo.time := timestamp;

//Create a Measurement with two Measurement fragments.
MeasurementValue mv1 := new MeasurementValue;
mv1.value := 10.2;
mv1.unit := "km/hr";

MeasurementValue mv2 := new MeasurementValue;
mv2.value := 11.7;
mv2.unit := "km/hr";

Connecting Apama Applications to External Components 10.11.3 185

10 The Cumulocity IoT Transport Connectivity Plug-in

dictionary<string, MeasurementValue> dict :=
{"speedX": mv1, "speedY": mv2};

mo.measurements.add("c8y_speed", dict);

integer reqId := com.apama.cumulocity.Util.generateReqId();
// Create a new Measurement in Cumulocity, ensuring that a response is
// returned
// and the processing mode, indicating how to process the request,
// sent to Cumulocity is Transient.
send mo.withChannelResponse(reqId, { "X-Cumulocity-Processing-Mode":

"Transient" }) to Measurement.SEND_CHANNEL;

// If the Measurement creation succeeded do something with the returned
// object or id.
on ObjectCommitted(reqId=reqId) as c and not

ObjectCommitFailed(reqId=reqId){
log "New measurement successfully created " + c.toString() at INFO;

}

// If the Measurement creation failed, log an error.
on ObjectCommitFailed(reqId=reqId) as cfail and not
ObjectCommitted(reqId=reqId){

log "Creating a new event failed " + cfail.toString() at ERROR;
}

}
}

Querying for measurements
To search for a measurement or a collection of measurements, send the
com.apama.cumulocity.FindMeasurement event to Cumulocity IoT, with a unique reqId to the
com.apama.cumulocity.FindMeasurement.SEND_CHANNEL channel.

The transportwill then respondwith zero ormore com.apama.cumulocity.FindMeasurementResponse
events and then one com.apama.cumulocity.FindMeasurementResponseAck event on the
com.apama.cumulocity.FindMeasurementResponse.SUBSCRIBE_CHANNEL channel.

Example:
integer reqId := com.apama.cumulocity.Util.generateReqId();

com.apama.cumulocity.FindMeasurement request :=
new com.apama.cumulocity.FindMeasurement;

request.reqId := reqId;

// Filter based on measurement fragment type and series
request.params.add("valueFragmentType", "c8y_MotionMeasurement");
request.params.add("valueFragmentSeries", "motionDetected");

// Subscribe to com.apama.cumulocity.FindMeasurementResponse.SUBSCRIBE_CHANNEL
// to listen for responses
monitor.subscribe(com.apama.cumulocity.FindMeasurementResponse.SUBSCRIBE_CHANNEL);

// Listen for responses based on reqId
on all com.apama.cumulocity.FindMeasurementResponse(reqId=reqId) as response
// Avoid listener leaks by terminating the listener on completion of the request

186 Connecting Apama Applications to External Components 10.11.3

10 The Cumulocity IoT Transport Connectivity Plug-in

and not com.apama.cumulocity.FindMeasurementResponseAck(reqId=reqId)
{

log "Received Measurement " + response.toString() at INFO;
}

// Listen for com.apama.cumulocity.FindMeasurementResponseAck,
// this indicates that all responses have been received
on com.apama.cumulocity.FindMeasurementResponseAck(reqId=reqId)
as requestCompleted

{
log "Received all Measurement(s) for request "

+ requestCompleted.reqId.toString() at INFO;

// Request is completed and we can unsubscribe from this channel
monitor.unsubscribe(com.apama.cumulocity.FindMeasurementResponse.SUBSCRIBE_CHANNEL);

}

// Send request to find available measurements
send request to com.apama.cumulocity.FindMeasurement.SEND_CHANNEL;

Supported query parameters

You can provide the following query parameters with the request:

DescriptionParameter

Search for a measurement based on measurementId. When searching for a
measurement based on Id, all the query parameters listed below are ignored.

id

Search for measurements based on the device identifier or asset identifier
of the source.

source

Search for measurements based on the type.type

Search for measurements based on fragment type (should be used with
valueFragmentSeries).

valueFragmentType

Search for measurements based on fragment series (should be used with
valueFragmentType).

valueFragmentSeries

Search for measurements from a start date. The date and time is provided
as seconds since the epoch.

fromDate

Search for measurements within a time range. This is to be used in
combinationwith fromDate. The date and time is provided as seconds since
the epoch.

toDate

Indicates how many entries of the collection are to be retrieved from
Cumulocity IoT. This is a batching parameter for gettingmultiple responses

pageSize

fromCumulocity IoT. A larger pageSize does fewer requests to Cumulocity
IoT to retrieve all the measurements, but each request is larger. By default,
1000 measurements are in each page and there is an upper limit of 2000.

Connecting Apama Applications to External Components 10.11.3 187

10 The Cumulocity IoT Transport Connectivity Plug-in

DescriptionParameter

Retrieve a specific page of results for the given pageSize. If currentPage is
set, then only a single page is requested. If currentPage is not set (default),
all the pages are requested.

currentPage

Boolean parameter. If a range query is used (that is, the query includes at
least one of the fromDate or toDate parameters), you can reverse the order

revert

in which the matching measurements are returned by adding the query
parameter revert=true. This returns the latest measurements first. By
default, Cumulocity IoT returns the oldest measurements first.

Query result paging

Cumulocity IoT queries support paging of data for requesting a specific range of the responses
received. For more information, see “Paging Cumulocity IoT queries” on page 197.

Using measurement fragments
A MeasurementFragment event represents a single fragment/series on a measurement.

Creating measurement fragments
You can send a single fragment to Cumulocity IoT to create a single-fragment measurement.

Example of creating a measurement fragment:
using com.apama.cumulocity.MeasurementFragment;
using com.apama.cumulocity.ObjectCommitFailed;
using com.apama.cumulocity.ObjectCommitted;

monitor Test {
string deviceId; // Where this is populated from the actual device Id.
float timestamp; // Where this is populated from the timestamp of the

// device.

action onload {
MeasurementFragment mf := new MeasurementFragment;
mf.type := "test_measurement";
mf.source := deviceId;
mf.time := timestamp;

mf.valueFragment := "c8y_speed";
mf.valueSeries := "speedX";
mf.value := 12.0;
mf.unit := "km/hr";

integer reqId := com.apama.cumulocity.Util.generateReqId();

send mf to MeasurementFragment.SEND_CHANNEL;
}

}

188 Connecting Apama Applications to External Components 10.11.3

10 The Cumulocity IoT Transport Connectivity Plug-in

Where

source is the source of the measurement.

time is the time at which the measurement was taken.

type is the type of the measurement.

valueFragment is the name of the fragment of the measurement fragment.

valueSeries is the name of the series of the measurement fragment.

value is the value from the sensor.

unit is the units the reading is in, for example, mm, lux, km/hr.

Sending measurement fragments requesting a response and setting headers

When creating a new object, it is recommended that you use the withChannelResponse action. This
allows your application to receive a response on completion on the
MeasurementFragment.SUBSCRIBE_CHANNEL channel. You will need to subscribe to the
MeasurementFragment.SUBSCRIBE_CHANNEL channel first. The response can be one of twopossibilities:

ObjectCommitted

This includes the reqIdwhich is the identifier of the original request, the Idwhich is the
identifier of the newly created or updated object, and the actual object in JSON form.

ObjectCommitFailed

This includes the reqIdwhich is the identifier of the original request, the statusCodewhich is
the HTTP status code of the failure, and the bodywhich is the content of the response from the
API (this might be in HTML format).

When using withChannelResponse, it allows the ability to set headers. This can be used, for example,
to determine what processing mode Cumulocity IoT will use as shown in the example below.

Example of creating a measurement fragment:
using com.apama.cumulocity.MeasurementFragment;
using com.apama.cumulocity.ObjectCommitFailed;
using com.apama.cumulocity.ObjectCommitted;

monitor Test {
string deviceId; // Where this is populated from the actual device Id.
string timestamp; // Where this is populated from the timestamp of the

// device.

action onload {
monitor.subscribe(MeasurementFragment.SUBSCRIBE_CHANNEL);
MeasurementFragment mf := new MeasurementFragment;
mf.type := "test_measurement";
mf.source := deviceId;
mf.time := timestamp;

mf.valueFragment := "c8y_speed";

Connecting Apama Applications to External Components 10.11.3 189

10 The Cumulocity IoT Transport Connectivity Plug-in

mf.valueSeries := "speedX";
mf.value := 12.0;
mf.unit := "km/hr";

integer reqId := com.apama.cumulocity.Util.generateReqId();

// Create a new Measurement in Cumulocity from a single
// MeasurementFragment, ensuring that a response is returned
// and the processing mode, indicating how to process the request, sent
// to Cumulocity is Transient.
send mf.withChannelResponse(reqId, { "X-Cumulocity-Processing-Mode":

"Transient" }) to MeasurementFragment.SEND_CHANNEL;

// If the Measurement creation succeeded do something with the returned
// object or id.
on ObjectCommitted(reqId=reqId) as c and not

ObjectCommitFailed(reqId=reqId){
log "New measurement successfully created " + c.toString() at INFO;

}

// If the Measurement creation failed, log an error.
on ObjectCommitFailed(reqId=reqId) as cfail and not

ObjectCommitted(reqId=reqId){
log "Creating a new measurement failed " + cfail.toString()

at ERROR;
}

}
}

Listening for measurement fragments
The Apama mapping codec can turn measurements into measurement fragments, and listeners
in EPL can match on the elements of measurement fragments rather than measurements.

Example - matching on measurement fragments:
on all MeasurementFragment(valueFragment = 'c8y_speed', valueSeries = 'speedX',

value > SPEED_LIMIT) as mf {
}

Turning measurement fragments on/off
To be able to match based on measurement fragments, you must ensure they are returned by
setting the correct measurement format. There are two modes available, MEASUREMENT_ONLY and
BOTH. The default, if it is not set or set incorrectly, is MEASUREMENT_ONLY. Set the mode to BOTH if you
require filtering based on fragments or series.

If you are deploying a custom microservice, connecting to Cumulocity IoT from an external
correlator, or using Software AGDesigner, you can set themode in the CumulocityIoT.properties
file (see also “Configuring theCumulocity IoT transport” on page 165) or directly on the command
line to start the correlator by setting the CUMULOCITY_MEASUREMENT_FORMAT value.

The recommended approach is to set the mode from the .properties file. For example, to turn
measurement fragments on:

190 Connecting Apama Applications to External Components 10.11.3

10 The Cumulocity IoT Transport Connectivity Plug-in

CUMULOCITY_MEASUREMENT_FORMAT=BOTH

Alternatively, you can set the mode using the command line. For example, to turn measurement
fragments off:
-DCUMULOCITY_MEASUREMENT_FORMAT=MEASUREMENT_ONLY

Note:
As of Apama 10.5, new Apama projects in Software AG Designer have the default set to BOTH,
but existing projects will retain their previous configuration. If you want to enable fragments
in an existing project, you may need to remove and re-add the bundle.

When you deploy (activate) an application directly in Cumulocity IoT using the Apama EPLApps
web application, both measurements and measurement fragments are always available (this is
always BOTH). See the Streaming Analytics guide at http://cumulocity.com/guides/ for more
information.

Handling measurement fragments
It is possible to separate the individual fragments from the contents of a Measurement into
MeasurementFragment objects, which can allow better performance matching in searches. You
achieve this by using the sequence<MeasurementFragment> getFragments() action on the Measurement
event. This returns a sequence of MeasurementFragment objects.

You can generate a Measurement event based on MeasurementFragment objects. You can achieve this
by using the static Measurement createFromFragments(sequence<MeasurementFragment> fragments)
action on the Measurement event, where fragments is the sequence of MeasurementFragment objects
to create it from, and it returns the created Measurement.

Using operations
The com.apama.cumulocity.Operation event represents a device operation. If the configuration
option subscribeToOperations is enabled (see “Configuring the Cumulocity IoT transport” on
page 165) or if you Subscribe to the operations stream, this event is sent to the
com.apama.cumulocity.Operation.SUBSCRIBE_CHANNEL (same as cumulocity.operations) channel.
This event contains the unique identifier of the operation (id), the identifier of the source (deviceId),
a status, and optional parameters.

Example of an operation:
Operation("12345", "deviceId", "EXECUTING", params)

where params is a dictionary of string keys and any values (dictionary<string, any>).

Make sure to set the deviceId field to the identifier of a managed object which has the
com_cumulocity_model_Agent fragment. The com_cumulocity_model_Agentmarks devices running
a Cumulocity IoT agent. Such devices receive all operations targeted to themselves and their
children for routing (see alsoDevice integration using REST in Cumulocity IoT'sDevice SDK guide).

When creating a new operation, do not supply the id field (that is, supply an empty string for the
operation identifier).

Connecting Apama Applications to External Components 10.11.3 191

10 The Cumulocity IoT Transport Connectivity Plug-in

http://cumulocity.com/guides/
https://cumulocity.com/guides/device-sdk/rest/

It is not possible to set the params field of an operation to an empty dictionary.

Example

The following is a simple example of how to receive, create and send operations:
// Subscribe to receive all the operations published from Cumulocity IoT

monitor.subscribe(Operation.SUBSCRIBE_CHANNEL);

on all Operation() as o {
log o.toString() at INFO;

// Update an operation
o.status := "EXECUTING";
send o to Operation.SEND_CHANNEL;

}

// Create an operation
Operation operation := new Operation;
operation.source := "<MANAGED_OBJECT_ID>";
operation.status := "PENDING";
operation.params.add("c8y_Message", {"text": "Device Operation"});
send operation to Operation.SEND_CHANNEL;

Creating a new operation
send com.apama.cumulocity.Operation("","<SOURCE>","<STATUS>",
{"c8y_Message":<any> {<any>"text":<any>"Hello Cumulocity device"}})
to com.apama.cumulocity.Operation.SEND_CHANNEL;

Where

<SOURCE> is the source of the operation (same as the ManagedObject identifier).

<STATUS> is the status of the operation. This can be PENDING.

Sending operations requesting response and setting headers

When creating a new object or updating an existing one, it is recommended that you use the
withChannelResponse action. This allows your application to receive a response on completion on
the Operation.SUBSCRIBE_CHANNEL channel. You will need to subscribe to the
Operation.SUBSCRIBE_CHANNEL channel first. The response can be one of two possibilities:

ObjectCommitted

This includes the reqIdwhich is the identifier of the original request, the Idwhich is the
identifier of the newly created or updated object, and the actual object in JSON form.

ObjectCommitFailed

This includes the reqIdwhich is the identifier of the original request, the statusCodewhich is
the HTTP status code of the failure, and the bodywhich is the content of the response from the
API (this might be in HTML format).

192 Connecting Apama Applications to External Components 10.11.3

10 The Cumulocity IoT Transport Connectivity Plug-in

When using withChannelResponse, it allows the ability to set headers. This can be used, for example,
to determine what processing mode Cumulocity IoT will use as shown in the example below.

Example of creating an operation:
using com.apama.cumulocity.Operation;
using com.apama.cumulocity.ObjectCommitFailed;
using com.apama.cumulocity.ObjectCommitted;

monitor Test_Operations {

action onload {
monitor.subscribe(Operation.SUBSCRIBE_CHANNEL);
Operation op := new Operation;
string name := "CreateOperation";
op.source := "7104835";
op.status := "PENDING";
op.params :=

{"c8y_Meassage":any(dictionary<any,any>,
{any(string,"text"):

any(string,"Hello Cumulocity device")
})

};

integer reqId := com.apama.cumulocity.Util.generateReqId();
// Create a new Operation in Cumulocity, ensuring that a response is
// returned.
send op.withChannelResponse(reqId, new dictionary<string, string>) to
Operation.SEND_CHANNEL;

// If the Operation creation succeeded do something with the returned
// object or id.
on ObjectCommitted(reqId=reqId) as c and not
ObjectCommitFailed(reqId=reqId){

log "New operation successfully created " + c.toString() at INFO;
}

// If the Operation creation failed, log an error.
on ObjectCommitFailed(reqId=reqId) as cfail and not
ObjectCommitted(reqId=reqId){

log "Creating a new event failed " + cfail.toString() at ERROR;
}

}
}

Updating an existing operation
You can update the status field.
send com.apama.cumulocity.Operation("<OPERATION_ID>","<SOURCE>","<STATUS>",
{"c8y_Message":<any> {<any>"text":<any>"Updated Cumulocity device"}})
to com.apama.cumulocity.Operation.SEND_CHANNEL;

Where

<OPERATION_ID> is the identifier of the previously created operation. The presence of
<OPERATION_ID> indicates that the request is for updating an existing operation.

Connecting Apama Applications to External Components 10.11.3 193

10 The Cumulocity IoT Transport Connectivity Plug-in

<SOURCE> is the source of the operation (same as the ManagedObject identifier).

<STATUS> is the status of the operation. This can be PENDING, EXECUTING, SUCCESSFUL or FAILED.

Querying for operations
To search for an operation or a collection of operations, send the
com.apama.cumulocity.FindOperation event to Cumulocity IoT, with a unique reqId to the
com.apama.cumulocity.FindOperation.SEND_CHANNEL channel.

The transportwill then respondwith zero ormore com.apama.cumulocity.FindOperationResponse
events and then one com.apama.cumulocity.FindOperationResponseAck event on the
com.apama.cumulocity.FindOperationResponse.SUBSCRIBE_CHANNEL channel.

Example:
integer reqId := com.apama.cumulocity.Util.generateReqId();

com.apama.cumulocity.FindOperation request :=
new com.apama.cumulocity.FindOperation;

request.reqId := reqId;

// Filter based on operation status
request.params.add("status", "PENDING");

// Subscribe to com.apama.cumulocity.FindOperationResponse.SUBSCRIBE_CHANNEL
// to listen for responses
monitor.subscribe(com.apama.cumulocity.FindOperationResponse.SUBSCRIBE_CHANNEL);

// Listen for responses based on reqId
on all com.apama.cumulocity.FindOperationResponse(reqId=reqId) as response
// Avoid listener leaks by terminating the listener on completion of the request
and not com.apama.cumulocity.FindOperationResponseAck(reqId=reqId)
{

log "Received Operation " + response.toString() at INFO;
}

// Listen for com.apama.cumulocity.FindOperationResponseAck,
// this indicates that all responses have been received
on com.apama.cumulocity.FindOperationResponseAck(reqId=reqId)
as requestCompleted

{
log "Received all Operation(s) for request "

+ requestCompleted.reqId.toString() at INFO;

// Request is completed and we can unsubscribe from this channel
monitor.unsubscribe(com.apama.cumulocity.FindOperationResponse.SUBSCRIBE_CHANNEL);

}

// Send request to find available operations
send request to com.apama.cumulocity.FindOperation.SEND_CHANNEL;

Supported query parameters

You can provide the following query parameters with the request:

194 Connecting Apama Applications to External Components 10.11.3

10 The Cumulocity IoT Transport Connectivity Plug-in

DescriptionParameter

Search for an operation based on operationId. When searching for an
operation based on Id, all the query parameters listed below are ignored.

id

Search for operations based on the device identifier or asset identifier of
the source.

source

Search for operations based on the status. The status can be any of
SUCCESSFUL, FAILED, EXECUTING or PENDING.

status

Search for operations based on the agent identifier.agent

Search for operations based on the fragment type.fragmentType

Indicates how many entries of the collection are to be retrieved from
Cumulocity IoT. This is a batching parameter for gettingmultiple responses

pageSize

fromCumulocity IoT. A larger pageSize does fewer requests to Cumulocity
IoT to retrieve all the operations, but each request is larger. By default, 1000
operations are in each page and there is an upper limit of 2000.

Retrieve a specific page of results for the given pageSize. If currentPage is
set, then only a single page is requested. If currentPage is not set (default),
all the pages are requested.

currentPage

Search for operations from a start date. The date and time is provided as
seconds since the epoch.

fromDate

Search for operationswithin a time range. This is to be used in combination
with fromDate. The date and time is provided as seconds since the epoch.

toDate

Boolean parameter. If a range query is used (that is, the query includes at
least one of the fromDate or toDate parameters), you can reverse the order

revert

in which the matching operations are returned by adding the query
parameter revert=true. This returns the oldest operations first. By default,
Cumulocity IoT returns the latest operation first.

Query result paging

Cumulocity IoT queries support paging of data for requesting a specific range of the responses
received. For more information, see “Paging Cumulocity IoT queries” on page 197.

Receiving update notifications
The Cumulocity IoT transport can receive update notifications on new measurements, events,
alarms, managed objects and operations that are processed by the Cumulocity IoT platform. By
default, all of these updates are sent. However, using the YAML configuration file, you can
configure whether you want to subscribe to them; see “Configuring the Cumulocity IoT
transport” on page 165.

Connecting Apama Applications to External Components 10.11.3 195

10 The Cumulocity IoT Transport Connectivity Plug-in

Notifications about measurements are only received by the Cumulocity IoT transport if the
processing mode in Cumulocity IoT is PERSISTENT or TRANSIENT (and not QUIESCENT or CEP).

When a notification about amanaged object, operation, alarm or event is sent, the paramsdictionary
memberwill contain a propertywhich signalswhether the notification is a new object or an update
to an existing object. The property name is in the constant PARAM_NOTIFICATION and has the value
corresponding to the value of the constants NOTIFICATION_CREATED or NOTIFICATION_UPDATED. The
recommended way to distinguish between create and update events is to use the isCreate() and
isUpdate() actions which are available on these events, as shown in the example below.

Measurements are not modifiable in Cumulocity IoT, so all measurement notifications are
newly-created objects.

Note:
This subscription makes use of the long-polling real-time notifications feature of Cumulocity
IoT. Note that this is not recommended for high-throughput use cases. See also the information
on real-time notifications in the Cumulocity IoT - API Specifications at https://cumulocity.com/
api/.

Example:
using com.apama.cumulocity.ManagedObject;
using com.apama.cumulocity.ManagedObjectDeleted;
using com.apama.cumulocity.Measurement;
using com.apama.cumulocity.MeasurementDeleted;
using com.apama.cumulocity.Event;
using com.apama.cumulocity.EventDeleted;
using com.apama.cumulocity.Alarm;
using com.apama.cumulocity.Operation;
monitor NotificationListener {
action onload {

// Subscribe for notification for managed objects
monitor.subscribe(ManagedObject.SUBSCRIBE_CHANNEL);
// Subscribe for notification for measurements
monitor.subscribe(Measurement.SUBSCRIBE_CHANNEL);
// Subscribe for notification for events
monitor.subscribe(Event.SUBSCRIBE_CHANNEL);
// Subscribe for notification for alarms
monitor.subscribe(Alarm.SUBSCRIBE_CHANNEL);
// Subscribe for notification for operations
monitor.subscribe(Operation.SUBSCRIBE_CHANNEL);
// Listen for notifications for managed objects
on all ManagedObject() as managedObject {

if managedObject.isCreate() {
log "ManagedObject created" at INFO;

}
else if managedObject.isUpdate() {
log "ManagedObject updated" at INFO;

}
}
// Listen for notifications on deleted managed objects
on all ManagedObjectDeleted() as managedObjectDeleted {

log "ManagedObject deleted" at INFO;
}
// Listen for notifications for measurements
on all Measurement() as measurement {

// Measurements can only be created

196 Connecting Apama Applications to External Components 10.11.3

10 The Cumulocity IoT Transport Connectivity Plug-in

https://cumulocity.com/api/
https://cumulocity.com/api/

log "Measurement created" at INFO;
}
// Listen for notifications on deleted measurements
on all MeasurementDeleted() as measurementDeleted {

log "Measurement deleted" at INFO;
}
// Listen for notifications for events
on all Event() as evt {

if evt.isCreate() {
log "Event created" at INFO;

}
else if evt.isUpdate() {

log "Event updated" at INFO;
}

}
// Listen for notifications on deleted events
on all EventDeleted() as eventDeleted {

log "Event deleted" at INFO;
}
// Listen for notifications for alarms
on all Alarm() as alarm {

if alarm.isCreate() {
log "Alarm created" at INFO;

}
else if alarm.isUpdate() {

log "Alarm updated" at INFO;
}

}
// Listen for notifications for operations
on all Operation() as operation {

if operation.isCreate() {
log "Operation created" at INFO;

}
else if operation.isUpdate() {

log "Operation updated" at INFO;
}

}
}

}

Paging Cumulocity IoT queries
Queries support paging when requesting multiple responses from Cumulocity IoT. The number
of objects requested by queries are controlled using the following query parameters: pageSize and
currentPage.

pageSize represents a batching parameter for getting multiple responses from Cumulocity
IoT. A larger pageSize does fewer requests to Cumulocity IoT to retrieve all the objects, but
each request is larger. By default, pageSize is set to 1000. There is an upper limit of 2000.

currentPage can be set to retrieve a specific page of results for a given pageSize. If you set
currentPage, then only a single page is requested. If currentPage is not set (default), all the
pages are requested.

Note:

Connecting Apama Applications to External Components 10.11.3 197

10 The Cumulocity IoT Transport Connectivity Plug-in

It is not recommended to set a small pageSize unless you are requesting a single page. To
do this, you must set currentPage. Set currentPage to 1 to retrieve the first pageSize results.
A warning is logged if pageSize is below 50 and currentPage is not set.

For more details on query result paging and the above query parameters, see the information on
the REST implementation in the Cumulocity IoT - API Specifications at https://cumulocity.com/api/.

Examples

The following example shows a FindEvent query where the first 50 events are requested:
// Example 1: A FindEvent query where the first 50 responses are requested.
com.apama.cumulocity.FindEvent request := new com.apama.cumulocity.FindEvent;
// ... adding other query params ...
request.params.add("pageSize", "50");
request.params.add("currentPage", "1");
send request to com.apama.cumulocity.FindEvent.CHANNEL;

The next two examples demonstrate how to request a range of events where we are not just
interested in the first page of results.

In the second example, pageSize is also set to 50, but currentPage is set to 3, thus requesting the
101st to 150th events:
// Example 2: A FindEvent query where the 101st-150th responses are requested
com.apama.cumulocity.FindEvent request := new com.apama.cumulocity.FindEvent;
//... adding other query params ...
request.params.add("pageSize", "50");
request.params.add("currentPage", "3");
send request to com.apama.cumulocity.FindEvent.CHANNEL;

As a general rule, if currentPage is greater than 1 and the number of objects you require is not a
factor of the start of the range (or if the number of responses required is greater than the upper
limit of pageSize), multiple requests are needed to retrieve the objects of interest. As the second
example above retrieves 50 events starting after the 100th response (and as 50 is a factor of 100),
only 1 request is required.

The third example illustrates a situation where multiple queries are required. 40 events are to be
retrieved, starting after the 60th response. As 40 is not a factor of 60, you should set pageSize to
20 (the largest common factor of 60 and 40) and send two requests: one where currentPage is set
to 4 (this retrieves the 61st-80th events), and another where currentPage is set to 5 (this retrieves
the 81st-100th events).
// Example 3: Two FindEvent queries retrieving the 61st-100th events
// First request retrieves 61st-80th events
com.apama.cumulocity.FindEvent request1 := new com.apama.cumulocity.FindEvent;
// ... adding other query params
request1.params.add("pageSize", "20");
request1.params.add("currentPage", "4");
send request1 to com.apama.cumulocity.FindEvent.CHANNEL;
// Second request retrieves 81st-100th events
com.apama.cumulocity.FindEvent request2 := new com.apama.cumulocity.FindEvent;
// ... adding other query params
request2.params.add("pageSize", "20");
request2.params.add("currentPage", "5");

198 Connecting Apama Applications to External Components 10.11.3

10 The Cumulocity IoT Transport Connectivity Plug-in

https://cumulocity.com/api/

send request2 to com.apama.cumulocity.FindEvent.CHANNEL;

Invoking other parts of the Cumulocity IoT REST API
The Cumulocity IoT REST API covers some extra functionality which is not covered with the
individual event types. To invoke any other part of the REST API, a generic request/response API
is provided which you can use to invoke any part of the Cumulocity IoT API.

To create the GenericRequest, always use new GenericRequest and then individually setwhichever
fields are needed by name. You must always set the reqId (which is used to tie requests and
responses together) to a unique identifier generated by the
com.apama.cumulocity.Util.generateReqId() action. You will also need to set the HTTP method
(also known as the verb) and path. For some APIs, you will also need the queryParams (which
populates the query string), body (typically a sequence or dictionary that will be converted to JSON
by the plug-in) and/or additional HTTP headers. The GenericRequest event should be sent to the
channel specified by the GenericRequest.SEND_CHANNEL constant.

To receive responses, you must subscribe to the channel given in the
GenericResponse.SUBSCRIBE_CHANNEL constant. The response eventswill contain the reqId identifier
specified in the request, as well as a body in a dictionary<any,any>where the AnyExtractor can
be used to extract the expected content. This dictionary contains a structure which is equivalent
to the JSON payload returned by Cumulocity IoT. For the cases where no body is expected in the
response (for example, for a DELETE request), only a GenericResponseComplete eventwill be received
for the request identifier.

When using an API which returns a collection, the results are automatically split into multiple
GenericResponse events, followed by a GenericResponseComplete, all with the reqId identifier
provided in the request.

Here is a simple example of using the API:
GenericRequest request := new GenericRequest;
request.reqId := com.apama.cumulocity.Util.generateReqId();
request.method := "GET";
request.isPaging := true;
request.path := "/measurement/measurements";
monitor.subscribe(GenericResponse.SUBSCRIBE_CHANNEL);
on all GenericResponse(reqId=request.reqId) as response

and not GenericResponseComplete(reqId=request.reqId)
{
AnyExtractor dict := AnyExtractor(response.getBody());
AnyExtractor source := AnyExtractor(dict.getDictionary("source"));

try{
AnyExtractor speed :=

AnyExtractor(dict.getDictionary("c8y_SpeedMeasurement")["speed"]);
log "Found measurement of type: c8y_SpeedMeasurement with id : " +

dict.getString("id") + " and source id :" + source.getString("id") +
" and speed "+speed.getFloat("value").toString()+
" "+speed.getString("unit")
at INFO;

}
catch(Exception e){

log "Failed to parse unexpected measurement : " +

Connecting Apama Applications to External Components 10.11.3 199

10 The Cumulocity IoT Transport Connectivity Plug-in

dict.toString() at WARN;
}

}
on GenericResponseComplete(reqId=request.reqId)
{
monitor.unsubscribe(GenericResponse.SUBSCRIBE_CHANNEL);

}
send request to GenericRequest.SEND_CHANNEL;

Invoking microservices
TheCumulocity IoT transport has a CumulocityRequestInterface eventwhich allows you to invoke
other microservices within Cumulocity IoT from an EPL application. This can be used from an
Apama instance outside of Cumulocity IoT andwithinCumulocity IoT, either as an EPL application
or a custom microservice.

Before you can create an HTTP request, you need to call a static connectToCumulocity() action in
order to connect (as shown in the later example). The following is the format of the action on the
helper class that you call to create a request:
action createRequest(string method, string path, any payload) returns Request

Pass the following:

The specific type of HTTP request that is to be created, such as GET or PUT.

A specific path that you want to append to your request. For example, the path for a
microservice that is running on your desired tenant:
/service/myMicroService/path/under/microservice.

The payload will be encoded as JSON. For example, a dictionary will be converted to a JSON
object.

This action will return an instance of a Request from the generic HTTP API (see also “Using
predefined generic event definitions to invoke HTTP services with JSON and string payloads” on
page 154) with configuration set up on the request. You can later call execute on this request,
passing in a handler to deal with any response.

The following example shows how tomake use of this class, that is, how tomake anHTTP request
in order to retrieve information from a running microservice:
monitor CumulocityTestMonitor {

action onload() {
try{

CumulocityRequestInterface cInterface :=
CumulocityRequestInterface.connectToCumulocity();

Request req := cInterface.createRequest("GET",
"/service/myMicroService/path/under/microservice",
{"request":"data"});

req.execute(getHandler);
}
catch (com.apama.exceptions.Exception e) {

log "Error thrown trying to create a Cumulocity Request " +
e.toString() at ERROR;

}

200 Connecting Apama Applications to External Components 10.11.3

10 The Cumulocity IoT Transport Connectivity Plug-in

}

action getHandler(Response resp) {
AnyExtractor d := resp.payload;
log "Response output: " + d.toString() at INFO;
log "Test Done";

}
}

The CumulocityRequestInterfacewill automatically detect if it is running inside or outside of
Cumulocity IoT and will automatically connect. If running remotely, it will rely on properties
being set, which will be the connection details provided for the transport. You can do this by
creating a .properties file in your project and specifying it with the --config optionwhen starting
a correlator (see "Starting the correlator" in Deploying and Managing Apama Applications).

Optionally, you can set the following if you are connecting to a Cumulocity IoT server with a
self-signed or private certificate. Set this to the path to the certificate authority file by which the
server's certificate was signed:
CUMULOCITY_TLS_CERT_AUTH_FILE

The helper class is included in the Utilities for Cumulocity bundle in Software AG Designer. You
can also find it in the monitor/cumulocity directory of your Apama installation.

Monitoring status for Cumulocity IoT
The Cumulocity IoT component provides status values via the user status mechanism. It provides
the following metrics (where prefix is user-CumulocityIoTGenericChain.cumulocityCodec):

DescriptionKey

Maximum request latency observed
during the last hour, in milliseconds.

prefix.maxLatencyInLastHourMillis

Details of the maximum latency request.
Consists of a tab-separated string
containing the following:

prefix.maxLatencyInLastHourDetails

ISO format timestamp in UTC,

method, path and parameters
truncated to 100 characters (in URL
format), and

an optional count of the number of
objects if this is a batched request (only
com.apama.cumulocity.Measurement
requests can be batched).

Details of the most recent slow request. A
request is slow if the request-response

prefix.mostRecentSlowRequestDetails

multiplied by the number of pages (or 1)

Connecting Apama Applications to External Components 10.11.3 201

10 The Cumulocity IoT Transport Connectivity Plug-in

DescriptionKey

is above
CUMULOCITY_LATENCY_SLOW_THRESHOLD_SECS
(see “Configuring the Cumulocity IoT
transport” on page 165). Consists of a
tab-separated string containing the
following:

ISO format timestamp in UTC,

method, path and parameters
truncated to 100 characters (in URL
format), and

an optional count of the number of
objects if this is a batched request (only
com.apama.cumulocity.Measurement
requests can be batched).

A quickly-evolving
exponentially-weighted moving average

prefix.requestLatencyEWMAShortMillis

of request latencies, in milliseconds. Uses
0.5 as the weight to calculate this. This
puts more importance on recent latencies
than requestLatencyEWMALongMillis.

A longer-term exponentially-weighted
moving average of request latencies, in

prefix.requestLatencyEWMALongMillis

milliseconds. Uses 0.1 as the weight to
calculate this.

Formore information aboutmonitor status information published by the correlator, see "Managing
and Monitoring over REST" and "Watching correlator runtime status", both in Deploying and
Managing Apama Applications.

When using Software AG Command Central to manage your correlator, see also "Monitoring the
KPIs for EPL applications and connectivity plug-ins" inDeploying andManagingApamaApplications.

Finding tenant options
In order to find the available tenant options on a tenant, you can send the event
com.apama.cumulocity.FindTenantOptions to FindTenantOptions.SEND_CHANNEL. This results in
events of type com.apama.cumulocity.FindTenantOptionsResponse being returned on
com.apama.cumulocity.FindTenantOptionsResponse.SUBSCRIBE_CHANNEL.

The returned event includes a sequence of com.apama.cumulocity.TenantOption, which individually
include the key/value combinations that represent the available tenant option.

202 Connecting Apama Applications to External Components 10.11.3

10 The Cumulocity IoT Transport Connectivity Plug-in

In order to filter the tenant options returned, you can specify values in the category and key fields
of the find request. If only the key is specified, then Cumulocity IoT returns all the available tenant
options and the correlator filters them by the key.

Getting user details
You can get the details of the current user by sending the event
com.apama.cumulocity.GetCurrentUser to com.apama.cumulocity.GetCurrentUser.SEND_CHANNEL.
This results in events of type com.apama.cumulocity.GetCurrentUserResponse being returned on
com.apama.cumulocity.GetCurrentUserResponse.SUBSCRIBE_CHANNEL.

The com.apama.cumulocity.GetCurrentUserResponse returned contains a
com.apama.cumulocity.CurrentUser event, which in turn contains the id of the user, the userName,
a sequence of effectiveRoles for the user and a dictionary of userOptions.

By default, this is the user which the Apama application is running as. This is either the user
configured in the Cumulocity IoT connection if it is not running within Cumulocity IoT or the
service user of the microservice if it is running in Cumulocity IoT.

The ability to request details of permissions for another user can be done by overriding the
authorization or cookies headers in the com.apama.cumulocity.GetCurrentUser event. This would
normally be used if you are taking the authentication details from a request to your application
and using them to determine the roles that user has.

Example - checking a user based on information in a received request:
/** Event containing extracted information retrieved from a
* http request where we want to check the validity of the user */
event ActionRequest {

string authorization;
string actionToTake;
string requestId;
string channel;

}
/** Response for the HTTP request */
event ActionResponse {

string requestId;
string actionResult;

}
/** Response if authorization failed */
event ActionNotAllowed {

string requestId;
}
...
monitor.subscribe(GetCurrentUserResponse.SUBSCRIBE_CHANNEL);

// Listen for incoming HTTP requests
on all ActionRequest() as ar {

integer reqId := com.apama.cumulocity.Util.generateReqId();
// Send a request to check the user from the incoming request
GetCurrentUser checkUser := new GetCurrentUser;
checkUser.reqId := reqId;
checkUser.authorization := ar.authorization;
send checkUser to GetCurrentUser.SEND_CHANNEL;

Connecting Apama Applications to External Components 10.11.3 203

10 The Cumulocity IoT Transport Connectivity Plug-in

// if authentication passed, check authorization
on GetCurrentUserResponse(reqId=reqId) as res and not

GetCurrentUserResponseFailed(reqId=reqId) {
if checkHasRoles("ActionAllowed", res.user.effectiveRoles) {

send ActionResponse(ar.requestId, performAction(ar.actionToTake))
to ar.channel;

} else {
send ActionNotAllowed(ar.requestId) to ar.channel;

}
}

// if authentication failed, return an error
on GetCurrentUserResponseFailed(reqId=reqId) as err and not

GetCurrentUserResponse(reqId=reqId) {
send ActionNotAllowed(ar.requestId) to ar.channel;

}
}
action performAction(string actiontoTake) returns string{

// do some action
return "";

}

action checkHasRoles(string role,sequence<Role> effectiveRoles) returns boolean {
Role r;
for r in effectiveRoles {

if r.id = role{
return true;

}
}
return false;

}
}

You can override the current user in one of the following ways:

By setting the authorization header of the other user. This would be used for basic
authentication and returns details of that other user.

If this is invalid, then GetCurrentUserResponseFailed is returned.

By setting both authCookie and xsrfToken to valid values for another user. This returns details
of that other user.

If either authCookie or xsrfToken are incorrect or not set, then GetCurrentUserResponseFailed
is returned.

Not setting all of authorization, authCookie or xsrfToken returns details of the current user.

Sample EPL
The sample EPL belowdescribes how to subscribe and receive devicemeasurements, device events
and device information.
package com.apama.sample;

using com.apama.cumulocity.ManagedObject;
using com.apama.cumulocity.Measurement;

204 Connecting Apama Applications to External Components 10.11.3

10 The Cumulocity IoT Transport Connectivity Plug-in

using com.apama.cumulocity.MeasurementValue;
using com.apama.cumulocity.Alarm;
using com.apama.cumulocity.Event;
using com.apama.cumulocity.Operation;

using com.apama.cumulocity.FindManagedObject;
using com.apama.cumulocity.FindManagedObjectResponse;
using com.apama.cumulocity.FindManagedObjectResponseAck;

monitor CumulocityApplication {

action onload() {

fetchManagedObjects();

listenForMeasurements();

listenForAlarms();

listenForEvents();

listenForOperations();
}

action fetchManagedObjects() {

// Subscribe to receive all the devices from Cumulocity IoT
monitor.subscribe(ManagedObject.SUBSCRIBE_CHANNEL);

// Consume all the devices from Cumulocity IoT
on all ManagedObject() as mo {

log mo.toString() at INFO;

// Update a managed object
/*
mo.params.add("CustomMetadata", {"metadata": "Adding custom data"});
send mo to ManagedObject.SEND_CHANNEL;
*/

}

monitor.subscribe(FindManagedObjectResponse.SUBSCRIBE_CHANNEL);

// Fetch a list of all available devices
integer reqId := com.apama.cumulocity.Util.generateReqId();
on all FindManagedObjectResponse(reqId=reqId) as response
and not FindManagedObjectResponseAck(reqId=reqId) {

log "Received managedObject " + response.managedObject.toString() at INFO;
}

on FindManagedObjectResponseAck(reqId=reqId) {
log "Find Managed Objects request completed" at INFO;
monitor.unsubscribe(FindManagedObjectResponse.SUBSCRIBE_CHANNEL);

}

// Retrieve list of all available devices
send FindManagedObject(reqId, "", {"fragmentType": "c8y_IsDevice"})

to FindManagedObject.SEND_CHANNEL;
}

action listenForMeasurements() {

Connecting Apama Applications to External Components 10.11.3 205

10 The Cumulocity IoT Transport Connectivity Plug-in

// Subscribe to receive all the measurements published from
// Cumulocity IoT
monitor.subscribe(Measurement.SUBSCRIBE_CHANNEL);

// Consume all the measurements from Cumulocity IoT
on all Measurement() as m {
log m.toString() at INFO;

}

// Create a new measurement
/*
Measurement m := new Measurement;
m.source := "<MANAGED_OBJECT_ID>";
m.time := currentTime;
m.type := "TemperatureMeasurement";
MeasurementValue mv := new MeasurementValue;
mv.value := 100.0;
dictionary<string, MeasurementValue> fragment :=

new dictionary<string, MeasurementValue>;
fragment.add("temperature", mv);
m.measurements.add("TemperatureMeasurement", fragment);
send m to Measurement.SEND_CHANNEL;
*/

}

action listenForEvents() {

// Subscribe to receive all the events published from
// Cumulocity IoT
monitor.subscribe(Event.SUBSCRIBE_CHANNEL);

// Consume all the events from Cumulocity IoT
on all Event() as e {
log e.toString() at INFO;
// Example for updating an event
/*
// update text
e.text := "This is an updated text";
send e to Event.SEND_CHANNEL;
*/

}

// Create a new event
/*
Event evt := new Event;
evt.source := "<MANAGED_OBJECT_ID>";
evt.type := "TestEvent";
evt.time := currentTime;
evt.text := "This is a sample event";
send evt to Event.SEND_CHANNEL;
*/

}

action listenForAlarms() {

// Subscribe to receive all the alarms published from
// Cumulocity IoT
monitor.subscribe(Alarm.SUBSCRIBE_CHANNEL);

206 Connecting Apama Applications to External Components 10.11.3

10 The Cumulocity IoT Transport Connectivity Plug-in

// Consume all the alarms from Cumulocity IoT
on all Alarm() as alarm {
log alarm.toString() at INFO;

// Example for updating an alarm
/*
// set alarm severity to MAJOR
alarm.severity := "MAJOR";
send alarm to Alarm.SEND_CHANNEL;
*/

}

// Create a new alarm
/*
Alarm alarm := new Alarm;
alarm.source := "<MANAGED_OBJECT_ID>";
alarm.type := "TestAlarm";
alarm.severity := "MINOR";
alarm.status := "ACTIVE";
alarm.time := currentTime;
alarm.text := "This is a sample alarm";
send alarm to Alarm.SEND_CHANNEL;
*/

}

action listenForOperations() {
// Subscribe to receive all the operations published from
// Cumulocity IoT

// Note: When using the Cumulocity transport, ensure that the
// subscribeToOperations transport property is set to true
monitor.subscribe(Operation.SUBSCRIBE_CHANNEL);

on all Operation() as o {
log o.toString() at INFO;

// Update an operation
/*
o.status := "EXECUTING";
send o to Operation.SEND_CHANNEL;
*/

}

// Create an operation
/*
Operation operation := new Operation;
operation.source := "<MANAGED_OBJECT_ID>";
operation.status := "PENDING";
operation.params.add("c8y_Message", {"text": "Device Operation"});
send operation to Operation.SEND_CHANNEL;
*/

}
}

Connecting Apama Applications to External Components 10.11.3 207

10 The Cumulocity IoT Transport Connectivity Plug-in

208 Connecting Apama Applications to External Components 10.11.3

10 The Cumulocity IoT Transport Connectivity Plug-in

11 Codec Connectivity Plug-ins

■ The String codec connectivity plug-in ... 210

■ The Base64 codec connectivity plug-in .. 211

■ The JSON codec connectivity plug-in .. 212

■ The Classifier codec connectivity plug-in ... 216

■ The Mapper codec connectivity plug-in .. 217

■ The Batch Accumulator codec connectivity plug-in .. 221

■ The Message List codec connectivity plug-in ... 222

■ The Unit Test Harness codec connectivity plug-in .. 225

■ The Diagnostic codec connectivity plug-in ... 228

Connecting Apama Applications to External Components 10.11.3 209

The String codec connectivity plug-in
The String codec can be used for transports that are dealingwith binary payloads ormap payloads
with binary data in one or more specific fields of the map which reflect the structure of the event.
It provides the ability to perform bidirectional translations between binary format and string
format. The codec is able to operate on arbitrary fields of the message, or the entire payload.

The field of a message going from the host to the transport should be of java.lang.String
(Java) or const char* (C++) type. The String codec translates the fields of such a message to
the byte[] (Java) or buffer_t (C++) type.

The field of a message going from the transport to the host should be of byte[] or buffer_t
type. The String codec translates the fields of such amessage to the java.lang.String or const
char* type.

By default, the String codec does UTF-8 encoding and decoding of a string:

When converting to a buffer_t or byte[], the end result is UTF-8 encoded.

When converting to a java.lang.String or const char*, the String codec assumes that the
source (buffer_t or byte[]) is UTF-8 encoded.

To reference the String codec, an entry such as the following is required in the connectivityPlugins
section of the configuration file (see also “Configuration file for connectivity plug-ins” on page 26):
stringCodec:
libraryName: connectivity-string-codec
class: StringCodec

You then need to add the String codec into your connectivity chain with the configuration for that
instance. An example configuration may look as follows:
startChains:
testChain:

- apama.eventString
- stringCodec:

nullTerminated: false
eventTypes:

- com.apamax.test.MyEventType
encoding: Latin-1
fields:

- metadata.foo
- payload.bar.baz
- payload.zot

- myBinaryTransport

The following configuration options are available for the String codec:

DescriptionConfiguration option

It is only permitted to set this option to truewhen the
encoding is UTF-8. It only affects the conversion to bytes for

nullTerminated

messages sent from the host towards the transport. When

210 Connecting Apama Applications to External Components 10.11.3

11 Codec Connectivity Plug-ins

DescriptionConfiguration option

messages are converted from bytes (on the transport side) to
strings (on the host side), a terminating null character is always
permitted but never required, regardless of the value of this
configuration option.

If set to true, a null-terminator character is added to the end
of the buffer when sending messages towards the transport.

If set to false, messages sent towards the transport do not
include a null-terminator.

Default: false.

Specifies which event types this codec will handle. Messages
with a type that is not listed or where sag.type is not set will

eventTypes

be ignored by this codec. If omitted, the codec attempts to
encode/decode the payload of all messages.

The list of metadata or payload fields that are to be converted
by this codec. Listed field that are not present in the event will

fields

be ignored by this codec. It is recommended that you prefix
each field with either payload or metadata, for example:
payload.myfield or metadata.myfield. If omitted, the codec
attempts to encode the entire payload.

The character set to be used for encoding/decoding.encoding

Default: UTF-8.

If charset is set in the metadata of a message (in either
direction), this will quietly override the encoding option. For
example, if the encoding option is set to Latin-1 and if the
message carries charset in the metadata (for example,
metadata.charset=CP1252), then the payload/metadata field
or the entire payload of the message is converted using the
character-set value of metadata.charset.

The Base64 codec connectivity plug-in
The Base64 codec performs bidirectional translation between binary payloads and a string that is
the Base64-encoding of that payload. The codec is able to operate on arbitrary fields of themessage,
or the entire payload.

The field of a message going from the host to the transport should be of byte[] (Java) or
buffer_t (C++) type. The Base64 codec encodes the fields of such a message to their
Base64-encoding, which will be a java.lang.String (Java) or const char* (C++) type.

Connecting Apama Applications to External Components 10.11.3 211

11 Codec Connectivity Plug-ins

The field of amessage going from the transport to the host should be a java.lang.String (Java)
or const char* (C++) type in Base64 format. The Base64 codec decodes the fields of such a
message to the byte[] (Java) or buffer_t (C++) type.

The Base64 codec follows theMIME (Multipurpose Internet Mail Extensions) specification, which
lists Base64 as one of two binary-to-text encoding schemes.

To reference the Base64 codec, an entry such as the following is required in the connectivityPlugins
section of the configuration file (see also “Configuration file for connectivity plug-ins” on page 26):
base64Codec:
libraryName: connectivity-base64-codec
class: Base64Codec

You then need to add the Base64 codec into your connectivity chain with the configuration for
that instance. An example configuration may look as follows:
startChains:
testChain:

- apama.eventMap
- base64Codec:

eventTypes:
- com.apamax.MyEvent

fields:
- metadata.baz
- payload.foo.asdf

- myTransport

The following configuration options are available for the Base64 codec:

DescriptionConfiguration option

Specifies which event types this codec will handle. Messages
with a type that is not listed or where sag.type is not set will

eventTypes

be ignored by this codec. If omitted, the codec attempts to
encode/decode the payload of all messages.

The list of metadata or payload fields that are to be converted
by this codec. Listed field that are not present in the event will

fields

be ignored by this codec. It is recommended that you prefix
each field with either payload or metadata, for example:
payload.myfield or metadata.myfield. If omitted, the codec
attempts to encode the entire payload.

The JSON codec connectivity plug-in
The JSON codec can be used if you have a transport that is dealing with messages in the JSON
format and you want your EPL application to be able to interact with it by sending and listening
for events. It does not matter whether the transport

takes JSON-formatted data from an external system and sends it towards the host, or

212 Connecting Apama Applications to External Components 10.11.3

11 Codec Connectivity Plug-ins

wants to be given JSON-formatted data from the direction of the host, and then sends it to an
external system, or

even does both of the above.

The JSON codec does bidirectional translation between JSON documents in the payload of a
message (transport side) and an object in the payload of a message (host side). If the JSON codec
is adjacent to the eventMap plug-in, then the JSON document on the transportwards side should
be an object with fields for the event members. The Mapper codec can help move fields to match
the event structure, map parts of the metadata into the payload, and support JSON values other
than objects.

For example, a JSON document like

{"a":2,"b":["x","y","z"]}

on the transport side corresponds to a java.util.Map (Java) or map_t (C++) on the host side. This
java.util.Map or map_tmaps a string to an integer for onemap entry and a string to a list of strings
for the other entry. When the apama.eventMap host plug-in sees an object like this, it will be able
to map it to/from an EPL event type such as the following:
event E {
integer a;
sequence<string> b;

}

The above assumes that either metadata.sag.type is set to E (see also “Metadata values” on page 58)
or the apama.eventMap host plug-in has been configured with defaultEventType: E. Remember
that this is completely bidirectional.

Taking a closer look at the inbound response, a typical chain would start with the HTTP client
transport (see also “TheHTTPClient Transport Connectivity Plug-in” on page 131). This transport
returns a byte array containing the response body which is normally transformed into a UTF-8
string using the String codec (see also “The String codec connectivity plug-in” on page 210). This
UTF-8 string, held in the payload, is then passed to the JSON codec and transformed into a data
structure that the JSON represents. At this point, the metadata.httpmap holds the headers and
other elements of the HTTP response, and is used to set the metadata.sag.type and add to the
response payload. After the mapping rules have been applied, the payload is passed to the
apama.eventMap host plug-in and converted to the event that is defined in the metadata.sag.type.

The apama.eventMap host plug-in can convert a map into an event. This map will either be created
from the JSON if it contains an object, or it will need to be created by mapping in the chain. In the
example below, we get a JSON object in the response and it maps to the EPL event shown:
// Example response payload contains a JSON object.

response = {"hostname":"host","name":"correlator","value":"expected value"}

// Maps to HTTPResponse event putting "value" into extra fields dictionary
// and adding the id from metadata.

HTTPResponse(id,"host","correlator",{value:"expected value"})

Connecting Apama Applications to External Components 10.11.3 213

11 Codec Connectivity Plug-ins

The top-level value in the JSON will normally be an object, which can be mapped directly to an
Apama event. However, it is also possible to use other JSON types such as string, array, boolean
or number. In those cases, you will need to map the decoded payload before it can be received by
Apama. For example:
// Other valid JSON responses that require mapping
// payload = "valid"
// payload = 3.14
// payload = []

HTTPResponse:
towardsHost:

mapFrom:
- payload.contents: payload

// The event can define a field or use @ExtraFieldsDict
// and provide a map for the contents.

event MyEvent{ any contents; }

It is not supported to have a JSON null as the top-level value in the payload. Empty payloads are
treated as special control messages in connectivity chains and the JSON codec will ignore such
messages. Nulls can occur elsewhere in the JSON structure and will be mapped to the empty any
type in EPL.

The content of the event that forms the JSON request will be transformed similarly, so care needs
to be taken over how the content will end up in the request JSON:
event Example{}

// Creates an empty JSON object in the payload.

{}

// Any and Optional need careful handling if the values
// are not set. They default to null.

event Example{ optional<string> test1; any test2 }

// Maps to

{"test1":null,"test2":null}

Since the JSON standard does not permit floating point “special” values such as Infinity and NaN
(see "Support for IEEE 754 special values" inDeveloping Apama Applications), float fields containing
such values are represented as strings when generating JSON using this codec. For example, this
is represented as [1.2, 3.4, "Infinity", "NaN"] in the generated JSON. If you need different
handling of special values (for example, representing them as a JSON null), add a custom codec
to your connectivity chain before the JSON codec to make any necessary conversions. In the other
direction, when parsing JSON, the codec gives an error if requested to parse one of these special
values that is not wrapped as a string.

There are two identically behaving versions of the JSON codec, one implemented using C++ and
the other implemented using Java. The C++ version of the codec has the same behavior as the Java
version, but it usually gives a better performance. In particular, changing between Java and C++

214 Connecting Apama Applications to External Components 10.11.3

11 Codec Connectivity Plug-ins

is expensive, so you shouldmatch the implementation language of the codec to that of the adjacent
codecs. See “Deploying plug-in libraries” on page 40 for more information.

A Java sample is provided in the samples/connectivity_plugin/java/JSON-Codec directory of your
Apama installation. This provides a more detailed end-to-end example of this codec (along with
the source code to this codec), which allows an EPL application to consume and emit JSON as EPL
events.

To reference the JSON codec, an entry such as the one below is required in the connectivityPlugins
section of the configuration file (see also “Configuration file for connectivity plug-ins” on page 26).
You can then just have a JSON codec in a chain in between the host and a transport. No
configuration is required for this plug-in.

Configuration file entry for Java:
jsonCodec:
directory: ${APAMA_HOME}/lib/
classpath:

- json-codec.jar
class: com.softwareag.connectivity.plugins.JSONCodec

Configuration file entry for C++:
jsonCodec:
libraryName: connectivity-json-codec
class: JSONCodec

The following configuration option is available for the JSON codec:

DescriptionConfiguration option

This option can be used in chains which have multiple
messages of different types through the chainwith a transport

filterOnContentType

or mapper configuration which is setting the
metadata.contentTypefield in themessages. It allows the JSON
codec to only process messages which (hostwards) are
correctly encoded in JSON or (transportwards) should be
encoded in JSON. Other messages need to be handled by
another codec in the chain which will handle
non-JSON-encoded messages.

If set to true and the metadata.contentType is set to anything
that does not match the pattern
"^application/([^/]*[+])?json(;[^=;]+=(\".*\"|[^=;]+))*$",
or if it is not set, then the codec will ignore the event in either
direction and pass it on unmodified.

If set to false, then the codec will attempt to process the
message no matter what the value of metadata.contentType
is.

Default: false.

Connecting Apama Applications to External Components 10.11.3 215

11 Codec Connectivity Plug-ins

Note:
Equivalent functionality is available with the JSON EPL plug-in. See "Using the JSON plug-in"
in Developing Apama Applications for detailed information.

The Classifier codec connectivity plug-in
The Classifier codec can be used to takemessages from a transport and assign themmessage types
suitable for the host. Typically this is the type of an EPL event, which corresponds to the metadata
field sag.type (see also “Metadata values” on page 58) when you are using the apama.eventMap
host plug-in. TheClassifier codec can inspect themessage payload andmetadata in order to classify
messages to the correct type. If it finds a match, it sets the sag.type appropriately, overwriting
anything which was there before.

To reference the Classifier codec, an entry such as the following is required in the
connectivityPlugins section of the configuration file (see also “Configuration file for connectivity
plug-ins” on page 26):
classifierCodec:
libraryName: ClassifierCodec
class: ClassifierCodec

You then need to add classifierCodec into your connectivity chains with the configuration for
that instance. An example configuration may look as follows:
classifierCodec:
rules:

- SomeType:
- payload.someField: someValue
- payload.anotherField:

- AnotherType:
- metadata.metadataField: true

- ThirdType:
- regex:payload.field2: /bar/([0-9]{3})([a-zA-Z]{3})/[!@#%\^&*]+
- payload.field3: something

- FourthType:
- regex:payload.field1: Valid PLAIN String

- FallbackType:

The top-level configuration element is just rules. It contains a list of one or more types which can
be assigned to messages. Each type contains a list of rules to match against the type with the
following properties:

Types are evaluated in order and the first one to match is assigned to a message.

If the list of rules for a type is empty, then it matches any message. There should be only one
such type and it must be last. With FallbackType in the above example configuration, it is
always guaranteed that a type is set on a message (because FallbackType is a last resort).

Rules within a type are evaluated in order, and comparisons stop on the first failure so that
common cases are evaluated first.

Field names must start with “metadata.” or “payload.”, or with “regex:metadata.” or
“regex:payload.” if you are using regular expressions.

216 Connecting Apama Applications to External Components 10.11.3

11 Codec Connectivity Plug-ins

Metadata and payload field names which contain a period (.) refer to nested map structures
within the metadata or payload. For example, metadata.http.headers.accept refers to a map
called “http” within the metadata, which contains a map called “headers”, which contains an
element called “accept”.

Empty rules match if the field is present (even if empty) with any value. With SomeType in the
above example configuration, this rule matches if anotherField in the payload contains any
value. This does not apply for regular expressions where empty rules are not allowed.

A non-empty rule usually looks for an exact string match, unless the field name begins with
“regex:”. In this case, the rule looks for a regular expression match against the entire field
value. For example, if field2 of the payload in the above example configuration is equal to
/bar/123aBc/&& or another matching string, and field3 contains something, then the message
can be classified as being of type ThirdType.

Regular expression matches are performed using the ICU library (see the ICU User Guide at
http://userguide.icu-project.org/strings/regexp for detailed information)with the default flags
- single line and case sensitive.

All rules within a type must be true to match that type. For the above example configuration,
thismeans that if anotherField in the payload exists, but someField does not contain someValue,
then SomeType does not match.

If no types match, then the sag.typemetadata field remains unchanged.

For “payload.” rules tomatch, the payloadmust be a java.util.Map (Java) or map_t (C++) with
string keys.

Messages coming from the direction of the host do not interact with the Classifier codec at all.
Use the apama.eventMap host plug-in, which always sets a sag.type for messages going from
the host towards the transport.

If you want to encode an or rule, then you can list the same type twice with different sets of rules.

The Mapper codec connectivity plug-in
TheMapper codec can be used to take messages from a transport which do not match the schema
expected by the host and turn them into messages which are suitable for the host. Typically this
means making sure that the fields in the message have the same names as the fields in the
corresponding EPL event type if you are using the apama.eventMap host plug-in (see also
“Translating EPL events using the apama.eventMap host plug-in” on page 32). This codec can
move fields around between the payload and themetadata and set the values of fields which have
no value from the transport. It is bidirectional and can also map messages coming from the host
into a format suitable for the transport.

The source code for this plug-in is also shipped as a sample in the samples/connectivity_plugin/
cpp/mapper directory of your Apama installation.

To reference the Mapper codec, an entry such as the following is required in the
connectivityPlugins section of the configuration file (see also “Configuration file for connectivity
plug-ins” on page 26):

Connecting Apama Applications to External Components 10.11.3 217

11 Codec Connectivity Plug-ins

http://userguide.icu-project.org/strings/regexp

mapperCodec:
libraryName: MapperCodec
class: MapperCodec

You then need to add mapperCodec into your connectivity chains with the configuration for that
instance. If you are also using the Classifier codec to assign types to incoming messages, then you
must have that codec on the transport side of the Mapper codec. An example configuration may
look as follows:
- mapperCodec:

allowMissing: true
SomeType:

towardsHost:
mapFrom:

- metadata.targetField1: metadata.sourceField1
- payload.myField2: metadata.myField2
- metadata.targetField3: payload.sourceField3
to set the correlator channel on a per-message basis:
- metadata.sag.channel: payload.mychannel
to move all fields from payload to metadata, use:
- metadata: payload

copyFrom:
- metadata.targetField4: metadata.sourceField4

forEach:
- payload.listA:

mapFrom:
- targetFieldA: sourceFieldA

copyFrom:
- targetFieldB: sourceFieldB

set:
- payload.fieldName: An overridden value

defaultValue:
- payload.targetFieldX: A default value

towardsTransport:
mapFrom:

- metadata.myField2: payload.myField2
- payload.sourceField3: metadata.targetField3

"*":
towardsHost:
defaultValue:

- payload.targetFieldY: A different value

An example message input and output for the above mapping a SomeType event towards the host,
as logged by the Diagnostic codec (with extra spacing to make it clearer), is:
[premap] Towards Host: {myField2:Field2,

sag.type:SomeType,
sourceField4:Field4,
sourceField1:Field1} /
{listA:[{sourceFieldB:Beta,

sourceFieldA:Alpha},
{sourceFieldB:Brian,
sourceFieldA:Andrew}],

fieldName:Gamma,
sourceField3:Field3}

218 Connecting Apama Applications to External Components 10.11.3

11 Codec Connectivity Plug-ins

[postmap] Towards Host: {targetField3:Field3,
sag.type:SomeType,
targetField1:Field1,
sourceField4:Field4,
targetField4:Field4} /
{listA:[{targetFieldA:Alpha,

sourceFieldB:Beta,
targetFieldB:Beta},
{targetFieldA:Andrew,
sourceFieldB:Brian,
targetFieldB:Brian}],

fieldName:An overridden value,
myField2:Field2,
targetFieldX:A default value,
targetFieldY:A different value}

The configuration of the Mapper codec is nested, with a map of type names, each containing
directions, each containing actions, each containing rules. The type name corresponds to the
sag.typemetadata field (see “Metadata values” on page 58). Instead of the name of a type, the
special symbol "*" (which must include the quotes so that it can be parsed in the YAML format
correctly) can be used to list rules to apply to all types. Messages are first processedwith any rules
matching their specific type, then any rules under "*" are applied.

The rules for a type are split into two directions:

towardsHost - Messages going from the transport to the host.

towardsTransport - Messages going from the host to the transport.

If you are writing a bidirectional chain, these rules will usually be the converse of each other.

Within a direction, the following actions can be applied. Each action operates on one or two fields.
Each field can be the entire payload, a field within the payload or metadata, or a nested field; see
below for details of field names.

mapFrom - Move a value to a new field from the specified field (target: source).

For the above example configuration, this means that if a message of type SomeType is being
passed from the transport towards the host, then the field sourceField1 from the metadata is
removed and its value is put into the field targetField1 of the metadata. The second mapFrom
rulemoves the value of myField2 from themetadata to the payload, using the same field name.
It is always the field on the left-hand side of the rule which is the target of the move operation,
regardless of whether messages are moving towards the transport or towards the host. For
bidirectional message types, it is quite common to have rules in towardsTransport that are the
inverse of the towardsHost rules, as is the case for myField2 in this example.

copyFrom - This action is exactly the same as the mapFrom action except that the source field is
not removed after the copy.

forEach - Iterate through all elements of a given sequence and apply the supplied mapping
actions.

For the above example configuration, this means that if a message of type SomeType is being
passed from the transport towards the host and if the message payload contains a sequence
field listA, then for each element of listA the subrules of mapFrom and copyFrom are applied.

Connecting Apama Applications to External Components 10.11.3 219

11 Codec Connectivity Plug-ins

That is, for every child element of listA, the field sourceFieldA is mapped to targetFieldA
(mapFrom) and the value of field sourceFieldB is copied to targetFieldB (copyFrom).

Note that the rules can only be applied if the child elements of the sequence are another event
or a dictionary (with string keys).

set - Set a metadata field, payload field or the top-level payload to a specific value, regardless
of whether that field already exists or not. For the above example configuration, this means
that if a message of the type SomeType is being passed from the transport towards the host,
then the field fieldNamewill be set to An overridden value.

defaultValue - If a metadata field, payload field or top-level payload is unset or empty/null,
then set it to a specified value. For the above example configuration, thismeans that if amessage
of any type is being passed from the transport towards the host, then the field targetFieldY
of its payload is set to A different value if - and only if - that field does not already exist in
the map. The following applies:

A top-level payload can be mapped to a string or map.

A payload field or metadata field can be mapped to a string, list or map.

Each of the above actions has a list of rules of the form target_field: source (where source is
either a field name or a string value). Notes:

The actions are applied in the following order: copyFrom, mapFrom, forEach, set, defaultValue.

Rules are applied in order within each action section, so you can move the contents out of a
field and then replace it with a different value.

The left-hand side is the field whose value is being set.

In the case of forEach, the left-hand side field corresponds to the sequence towhich the subrules
are applied.

Field names must start with “metadata.” or “payload.”, or must be the string “payload” or
“metadata” - except for those within a forEach action, in which case they only name a field
within an element of the sequence.

Field names which contain a period (.) refer to nested map structures within the metadata or
payload. For example, payload.http.headers.accept refers to a map called “http” within the
payload, which contains a map called “headers”, which contains an element called “accept”.

Special cases: in metadata source expressions, a field name with a period (.) in it is looked up
at the top-level and used if it is found, otherwise as a nested name. Using the sag. prefix as a
target does not create a new map within the metadata.

A copyFrom or mapFrom rule where the source field does not exist uses the default value if the
defaultValue exists or if a subsequent copyFrom or mapFrom rule exists for the same destination
field. If none of these fallback options exist (like a defaultValue), then themessage is discarded
with an error.

TheMapper codec also accepts an allowMissing configuration item at the top level. This affects
all rules in the Mapper codec and defaults to false. If allowMissing is set to true, an error is
not raised when a defaultValue (or a subsequent copyFrom or mapFrom rule) has not been set

220 Connecting Apama Applications to External Components 10.11.3

11 Codec Connectivity Plug-ins

and a source field is missing. allowMissing needs to be defined at the same level as the event
types.

If setting a payload field on a payload that is not a map, the payload is first overwritten with
an empty map.

payload in the left-hand side or right-hand side of a rule (rather than payload.fieldname) refers
to the entire payload object. This allows you, for example, to map an entire string payload into
a field in a map in the resulting message's payload, or vice-versa.

Any rules that mention payload.fieldname assume that the payload is a java.util.Map (Java)
or map_t (C++) with string keys.

The Batch Accumulator codec connectivity plug-in
Events being written from the correlator to a connectivity transport are automatically batched for
performance reasons. Many transports also read batches of incoming messages and send them
into the correlator in a batch as well. However, some transports do not perform this batching and
deliver messages one at a time. For such transports, performance can be increased by adding the
batching before it is parsed by the correlator. This can be done with the Batch Accumulator codec.

For the transports that are provided out of the box, all the message-bus transports such as MQTT
and Kafka already provide batching, The HTTP client, however, does not benefit from it because
of the request/response nature. If you are using the HTTP server in submission-only mode and
want to achieve a high rate of requests with multiple clients, then the Batch Accumulator codec
can be useful. It may also be useful with any custom transports you write.

The Batch Accumulator codec automatically tunes batch sizes from one up, depending on the rate
of incoming requests, and requires no manual tuning. It does not wait to accumulate a batch for
a certain period of time and so does not introduce unnecessary latency. The batching is performed
for messages going from the transport to the host. Messages from the host to the transport are
passed through verbatim since they are already in batches.

To load the Batch Accumulator codec, an entry such as the following is required in the
connectivityPlugins section of the configuration file (see also “Configuration file for connectivity
plug-ins” on page 26):
batchAccumulatorCodec:
libraryName: connectivity-batch-accumulator-codec
class: BatchAccumulator

You then need to insert the batchAccumulatorCodec in your connectivity chain just before the
transport. For example:
dynamicChains:

http:
- apama.eventMap
- mapperCodec:

...
- classifierCodec:

...
- jsonCodec
- stringCodec

Connecting Apama Applications to External Components 10.11.3 221

11 Codec Connectivity Plug-ins

- batchAccumulatorCodec
- httpServer:

automaticResponses: true

The Batch Accumulator codec can be inserted anywhere in the chain, but it is better to insert it
close to the transport. It is entirely transparent to the plug-ins either side.

By default, the Batch Accumulator codec has a maximum batch size of 1000. This means if more
than 1000 messages are waiting to be processed by the host-bound thread, requests from the
transport will block. It alsomeans you can be using up to 1000 times yourmessage size inmemory
in outstanding events. You can configure a different batch sizewith the maxBatchSize configuration
option (see below).

The Batch Accumulator codec exposes the actual size of the queue via a user-defined status value.
This is available through the various monitoring tools for the correlator with the name
user-chain.batchAccumulator.queueSize. This will be the most recent batch size removed from
the queue. See also “User-defined status reporting from connectivity plug-ins” on page 63.

The following configuration option is available for the Batch Accumulator codec:

DescriptionConfiguration option

Optional. The maximum number of messages in a batch.maxBatchSize

This must be a positive integer, at least 1.

Default: 1000.

The Message List codec connectivity plug-in
The Message List codec can be used with a service which supports processing a batch of events
in a single request by combining multiple requests into a single list. This requires support from
the connected service since the Message List codec changes the type of events being sent.

At high event rates, the correlator will produce batches of messages rather than a single message.
Some transports, such as the HTTP client, are inherently single-event based and the maximum
rate they can send at depends on the speed of processing a singlemessage. TheMessage List codec
can combine a batch of messages being sent from the correlator into a single message whose body
is a list of the original messages in the batch. If the destination service supports this, then thewhole
batch can be delivered in a single round-trip from the transport.

If the service produces replies which are also a list of replies, then the Message List codec splits
them up and delivers them back to the correlator as separate messages.

You need a transport or downstream codec which expects the lists produced by the Message List
codec aswell as a servicewhich supports them.Often thiswill be by encoding the lists in something
like JSON and then using the String codec to produce a binary message for the transport.

To load the Message List codec, an entry such as the following is required in the
connectivityPlugins section of the configuration file (see also “Configuration file for connectivity
plug-ins” on page 26):

222 Connecting Apama Applications to External Components 10.11.3

11 Codec Connectivity Plug-ins

messageListCodec:
libraryName: connectivity-message-list-codec
class: MessageListCodec

You then need to add the messageListCodec to your connectivity chain in the appropriate place.
A typical use might be for accessing a web service which has been configured to process lists of
messages in JSON format. The HTTP client chain for such a service might look like this:
startChains:

webServiceChain:
- apama.eventMap
- mapperCodec:

...
- classifierCodec:

...
- messageListCodec:

metadataMode: first
- jsonCodec
- stringCodec
- httpClient:

host: ${WEBSERVICE_HOST}
port: ${WEBSERVICE_PORT}

With the above example, the lists produced by the Message List codec are being encoded into
JSON to be consumed by the web service.

The following configuration options are available for the Message List codec:

DescriptionConfiguration option

Optional. The maximum number of events that are to be
combined into a single list. The actual number will depend
on the correlator's accumulation of messages to send.

maxBatchSize

This must be a positive integer.

Default: 1000.

Required. The strategy for handling the metadata of multiple
requests. This must be one of the following:

metadataMode

first - Just use the metadata from the first message in the
batch as the metadata for the list message.

splitBatch - Only add items whose metadata is identical
from the batch to a list. Create a new list message when
the metadata changes.

requestIdList - Use the metadata from the first message,
but set metadata.requestId to be a list containing the
requestId of each message

member - Instead of creating a list of payloads, create a list
of maps, each with two members, where metadata refers

Connecting Apama Applications to External Components 10.11.3 223

11 Codec Connectivity Plug-ins

DescriptionConfiguration option

to the metadata for that message and payload refers to the
payload of that message.

When converting a list back to separate messages, the above
mapping is performed in reverse to create the individual
messages.

The main choice to make is how to handle the metadata when combining multiple messages into
a single message. Which choice you will make depends on your application. Let us assume that
we have a batch of messages of the following form:
metadata = { requestId: 5, http: { method: PUT, path: /add } }
payload = { name: "Matt", age: 30 }

The payload values and the requestId vary with each message. The examples below show how
the Message List codec combines two messages in a batch using the different metadataMode
strategies.

metadataMode: first

metadata = { requestId: 5, http: { method: PUT, path: /add } }
payload = [{ name: "Matt", age: 30 }, { name: "James", age: 21 }]

metadataMode: requestIdList

metadata = { requestId: [5, 6], http: { method: PUT, path: /add } }
payload = [{ name: "Matt", age: 30 }, { name: "James", age: 21 }]

metadataMode: splitBatch

metadata = { requestId: 5, http: { method: PUT, path: /add } }
payload = [{ name: "Matt", age: 30 }]
metadata = { requestId: 6, http: { method: PUT, path: /add } }
payload = [{ name: "James", age: 21 }]

metadataMode: member

metadata = { }
payload = [

{
metadata: { requestId: 5, http: { method: PUT, path: /add } },
payload: { name: "Matt", age: 30 }

},
{

metadata: { requestId: 6, http: { method: PUT, path: /add } },
payload: { name: "James", age: 21 }

}
]

224 Connecting Apama Applications to External Components 10.11.3

11 Codec Connectivity Plug-ins

You need to construct your application and the web service it is calling for the strategy that you
have chosen. In some cases, youmay need an additionalMapper codec to set some of themetadata
for the combined message on the transport side of the Message List codec.

The Unit Test Harness codec connectivity plug-in
The Unit Test Harness codec and the Null Transport transport make it easy to send test messages
into a connectivity chain and/or to write out received messages to a text file, without the need to
write any EPL in the correlator, which is very useful for writing unit tests for connectivity plug-ins,
and especially codecs.

Unit Test Harness. This is a Java codec that is useful for unit testing your plug-ins in isolation,
by writing messages from the chain to a text file, and/or sending test messages into the chain
from a text file (in either direction) without the need to use or configure the host or transport
at either end of the chain.

Null Transport. This is a trivial Java transport that does not send any messages towards the
host and ignores anymessages received from the host direction. If you are unit-testing a codec
plug-in, no sending or receiving functionality is required for the transport. However, as a
transport needs to exist at the end of a connectivity chain, you should use the Null Transport
as the chain's transport.

The following example configuration shows the how the harness could be used for testing the
behavior of a codec plug-in in the “towards host” direction, by sending test messages through the
plug-in being tested and writing the messages from the plug-in out to a file:
connectivityPlugins:
unitTestHarness:

classpath: ${APAMA_HOME}/lib/connectivity-unit-test-harness.jar
class: com.softwareag.connectivity.testplugins.UnitTestHarness

nullTransport:
classpath: ${APAMA_HOME}/lib/connectivity-unit-test-harness.jar
class: com.softwareag.connectivity.testplugins.NullTransport

plug-in being tested would also be defined here

startChains:
MyTestChain:

- apama.eventMap
this is a unit test, so the host is not used

- unitTestHarness:
pluginUnderTest: towardsTransport
writeTo: output-towards-host.txt

- myCodecPluginBeingTested
- unitTestHarness:

pluginUnderTest: towardsHost
readFrom: ${TEST_INPUT_DIR}/input-towards-host.txt

- nullTransport
this is a codec unit test, so no transport functionality is required

Apama ships an example of some PySys test cases using the Unit Test Harness codec as part of
the JSON codec. You can find it in the samples\connectivity_plugin\java\JSON-Codec\tests
directory of your Apama installation.

Connecting Apama Applications to External Components 10.11.3 225

11 Codec Connectivity Plug-ins

The following configuration options are available for the Unit Test Harness codec:

DescriptionConfiguration option

Required. Either towardsTransport or towardsHost, indicating
which direction the plug-in being tested is along the chain
relative to this unitTestHarness instance.

pluginUnderTest

Messages from the readFrom file are sent down the chain
towards the direction identified by pluginUnderTest, and
messages received from that direction of the chain (that is,
that were sent towards the opposite of the pluginUnderTest
direction) are written to the writeTo file.

For example, a chain might have the host plug-in followed by
a unitTestHarnesswith pluginUnderTest=towardsTransport
followed by a codec plug-in that you are testing, followed by
a unitTestHarnesswith pluginUnderTest=towardsHost followed
by a nullTransport instance.

The path of a UTF-8 text file to which messages from the
plug-in under test are written.

writeTo

If empty, no messages are written to a text file.

Default: empty.

The path of a UTF-8 text file from which messages are read
and sent towards the plug-in under test, or a directory

readFrom

containing such text files. When this plug-in is started,
messages are read from the file and sent towards the plug-in
under test. If a directory is specified, then the same is done
for any new files in that directory, including any files that are
subsequently written to that directory while the plug-in is
running.

If empty, no messages are sent by the unitTestHarness.

Default: empty.

By default, the unitTestHarnesswrites a single-line log
message to the host's log file for eachmessage from the plug-in

logOutput

under test, using the same format as writeTo. This may be
useful as an alternative to writeTo, or as a way to create test
cases that block until either the host log file contains the final
expected message or an error message.

If you want to disable this behavior because the log file is
becoming too large, then set this to false.

Default: true.

226 Connecting Apama Applications to External Components 10.11.3

11 Codec Connectivity Plug-ins

DescriptionConfiguration option

By default, anymessages received by the unitTestHarness are
not passed on to the next plug-in in the chain (typically the

passThrough

transport or the host), as usually writing or logging the
messages is all that is required and passing them on would
require extra configuration in the host or transport to avoid
error messages.

If you want to include the host or transport in your testing,
then set this to true.

Default: false.

If set to true, messages received from the plug-in under test
are automatically sent back in the opposite direction towards

echoBack

the plug-in under test. This is useful for testing the round-trip
mapping behavior of a codec plug-in.

Default: false.

The file format for readFrom and writeTo is identical, containing a metadata line followed by a
payload line, repeating until the end of the file. Blank lines and lines starting with a hash (#) are
ignored. The file encoding for both is always UTF-8 (which is the same as ASCII for the most
common alphanumeric and punctuation characters).

A metadata line is encoded as a single-line JSON string. For example:
metadata={"aim":"purpose of this test message", "other stuff":[1, 2, 3]}

A payload line can use one of the following formats, depending on the type:

Anymessage payload except for byte[] can be encoded using as a single-line JSON string. For
example:
payload_json={"a\nb":123, "c":[true]}

There are some special JSON formats that can be used:

JSON does not allow non-string keys. A special format of a JSON object with a ".Map" key
and a value of a list of size 2 lists will be converted to a map. For example:
{".Map":[[123,"abc"],[987,"zyx"]]}

This would be converted to {123:"abc",987:"zyx"} if JSON allowed it. These may also be
nested, for example:
{".Map":[[{".Map":[[333,"abc"],[555,"zyx"]]},"value"]]}

Any other keys in the ".Map" object will be ignored.

A special format of a JSONmap objectwith a ".NamedMap" key to a string value and a ".Map"
keywill create a NamedMap Java classwhich can be usedwith the EPL any type. For example:

Connecting Apama Applications to External Components 10.11.3 227

11 Codec Connectivity Plug-ins

{".NamedMap":"MyEvent",".Map":{"i":123}}

The contents of ".Map"will be namedwith the MyEventnamewhich can be used to determine
the type of the converted any type variable. The ".Map" value may also use the special
formatting above.

Although JSON can be used to represent simple string payloads, it is sometimes simpler to
use payload_string format for these as it removes the need to follow JSON quoting rules. For
example:
payload_string=a " b

Note that the above can only be used if there are no new lines in the string. If there are new
lines, use a JSON string instead. For example:
payload_json="my\nstring"

For binary payloads (that is, a message whose payload is a byte array), use payload_byte[],
which takes a base64-encoded representation of binary data. For example:
payload_byte[]=SGVsbG8gV29ybGQ=

The Diagnostic codec connectivity plug-in
The Diagnostic codec can be used to diagnose issues with connectivity plug-ins. It logs the events
that go through a connectivity chain in either direction.

To reference the Diagnostic codec, an entry such as the following is required in the
connectivityPlugins section of the configuration file (see also “Configuration file for connectivity
plug-ins” on page 26):
diagnosticCodec:
libraryName: DiagnosticCodec
class: DiagnosticCodec

You can then add the diagnosticCodec at any point in a connectivity chain. With no further
configuration, the codec logs to the correlator log file at INFO level.

An example configuration may look as follows:
startChains:
myChain:

- apama.eventMap
- diagnosticCodec:

tag: host
output: logger
logLevel: DEBUG

- myCodec # the codec being inspected
- diagnosticCodec:

tag: transport
output: logger
logLevel: DEBUG

- myTransport

The following configuration options are available:

228 Connecting Apama Applications to External Components 10.11.3

11 Codec Connectivity Plug-ins

DescriptionConfiguration option

If a chain has multiple diagnosticCodec instances, you can
specify a tag for each instance to distinguish it from other

tag: string

instances. string is the tag that is used to prefix the messages
from the current instance. Default: empty.

Defines the file to which the codec logs its output. mode can be
one of the following:

output: mode

logger - Default. The codec logs to the correlator log file
at the log level that is defined with logLevel.

file - The codec logs to the file that is defined with
fileName.

Applies when the loggermode is defined. level can be any
correlator log level. Default: INFO.

logLevel: level

Applieswhen the filemode is defined. file is either the path
to a file or one of the special strings stdout or stderr. Default:
stdout.

fileName: file

When writing to the correlator log file, the Diagnostic codec replaces any non-printable ASCII
characters (those with ASCII values less than 0x20, which includes tab and newline) with an
underscore (_) character.

Output to files

If the mode of the output configuration option is set to file, the Diagnostic codec formats the
output messages as follows:
[tag] direction: metadata / payload

where:

tag is optional. This is the tag that is defined in the configuration (or omitted completely if no
tag is configured). If a tag is present, it is enclosed in square brackets.

direction is either “Towards Host” or “Towards Transport”.

metadata is the content of the metadata at the point in the chain where the Diagnostic codec
has been placed.

payload is the content of the payload at the point in the chain where the Diagnostic codec has
been placed.

The following is an example of an output message that is written to a file:
[host] Towards Transport: {sag.type:test.EventType, sag.channel:myChain} /
{t:Isabelle,isB:true}

Connecting Apama Applications to External Components 10.11.3 229

11 Codec Connectivity Plug-ins

Output to loggers

If the mode of the output configuration option is set to logger, the Diagnostic codec formats the
output messages with an additional prefix:
timestamp loglevel [threadID] - <connectivity.codecname.chainname>

where:

timestamp is the date and time that the output was logged.

loglevel is configured in the Diagnostic codec configuration.

threadID is the unique integer identifier of the thread that logged the message.

codecname is the name of the Diagnostic codec listed in the configuration (usually
“diagnosticCodec”).

chainname is the name of the codec chain listed in the configuration.

The following is an example of an output message that is written to a log file:
2020-03-16 17:45:14.472 DEBUG [18744] - <connectivity.diagnosticCodec.myChain> [host]
Towards Transport: {sag.type:test.EventType,sag.channel:myChain} /
{t:Isabelle,isB:true}

230 Connecting Apama Applications to External Components 10.11.3

11 Codec Connectivity Plug-ins

III Correlator-Integrated Support for the Java

Message Service (JMS)

12 Using the Java Message Service (JMS) ... 233

Connecting Apama Applications to External Components 10.11.3 231

232 Connecting Apama Applications to External Components 10.11.3

III Correlator-Integrated Support for the Java Message Service (JMS)

12 Using the Java Message Service (JMS)

■ Overview of correlator-integrated messaging for JMS ... 234

■ Getting started with simple correlator-integrated messaging for JMS 236

■ Getting started with reliable correlator-integrated messaging for JMS 246

■ Mapping Apama events and JMS messages ... 248

■ Dynamic senders and receivers ... 275

■ Durable topics .. 276

■ Receiver flow control .. 276

■ Monitoring correlator-integrated messaging for JMS status ... 277

■ Logging correlator-integrated messaging for JMS status ... 278

■ JMS configuration reference ... 285

■ Designing and implementing applications for correlator-integrated messaging for JMS . 296

■ Diagnosing problems when using JMS .. 311

■ JMS failures modes and how to cope with them .. 313

Connecting Apama Applications to External Components 10.11.3 233

Apama support for JavaMessage Service (JMS)messaging is integrated into theApama correlator.
This provides an efficient method for Apama applications to support JMS messages for
communication with external systems. In this documentation, this support is referred to as
"correlator-integrated messaging for JMS".

Note:
Apama supports a number of different JMS providers. For provider-specific limitations, see the
Apama readme,which is available fromhttp://documentation.softwareag.com/apama/index.htm.

Overview of correlator-integrated messaging for JMS
The Java Message Service (JMS) provides a common programming model for asynchronously
sending events and data across enterprise messaging systems. JMS supports two models,
“publish-and-subscribe” for one-to-many message delivery and “point-to-point” for one-to-one
message delivery. Apama's correlator-integrated messaging for JMS supports both these models.

When configured touse correlator-integratedmessaging for JMS,Apamaapplicationsmap incoming
JMS messages to Apama events and map outgoing Apama events to JMS messages.

Apama's correlator-integratedmessaging for JMS supports the following levels of reliability, built
upon the reliability mechanisms provided by JMS:

BEST_EFFORT

AT_LEAST_ONCE

EXACTLY_ONCE

APP_CONTROLLED (can be set for only receivers, not for senders)

When the reliability level is set to EXACTLY_ONCE or AT_LEAST_ONCE or APP_CONTROLLED then delivery
is guaranteed because messages are robustly retained by the broker until they are received and
acknowledged by the Apama client. The APP_CONTROLLED reliability mode lets the application
control when messages are acknowledged to the broker.

When the reliability level is set to BEST_EFFORT, message delivery is not guaranteed. For applications
that do not require guaranteed message delivery, the BEST_EFFORTmode provides greater
performance.

Note:
If a license file cannot be found, the correlator is limited to BEST_EFFORT only messaging. See
"Running Apama without a license file" in Introduction to Apama.

In SoftwareAGDesigner, you can specify configuration for JMS, either in the correlator-integrated
adapter for JMS editor or by editing sections of the XML and .properties configuration files
directly. Note, however that themapping configuration should always be edited by usingApama's
adapter editor.

234 Connecting Apama Applications to External Components 10.11.3

12 Using the Java Message Service (JMS)

http://documentation.softwareag.com/apama/index.htm

Samples for using correlator-integrated messaging for JMS
Apama provides the following example applications in Software AG Designer that illustrate the
use of correlator-integrated messaging for JMS. The examples are located in the APAMA_HOME\
samples\correlator_jms directory.

simple-send-receive - This application demonstrates simple sending and receiving. It sends
a sample event to a JMS queue or topic as a JMS TextMessageusing the automatically configured
default sender and receives the message using a statically-configured receiver.

dynamic-event-api - This application demonstrates how to use the event API to dynamically
add and remove JMS senders and receivers. In addition, it shows how to monitor senders and
receivers for errors and availability.

flow-control - This application demonstrates how to use the event API to avoid sending events
faster than JMS can handle and a separate demonstration of how to avoid receiving messages
from JMS faster than the EPL application can handle.

Key concepts for correlator-integrated messaging for JMS
The key JMS concepts when implementing an Apama application with correlator-integrated
messaging are connections, receivers, and senders.

JMS connections

To use JMS you must configure one or more named connections to the JMS broker. If you need to
connect to multiple separate JMS broker instances (which may be using the same JMS
provider/vendor or different ones) you need a connection for each; it's also possible to addmultiple
connections for the same broker (for example, for rare cases where it improves performance
scalability). In Software AG Designer, you can select from a variety of JMS providers that come
with default connection configurations.

JMS receivers

A receiver is a single-threaded context for receiving messages from a single JMS queue or topic
(with a single JMS Session and MessageConsumer object). A connection to a JMS broker can be
configured with any number of receivers. Many, but not all, JMS providers support creating
multiple receivers for a single queue (or in some cases, topic) either to scale throughput
performance, or when using JMS "message selectors" to partition the messages on a destination.

JMS senders

A sender is a single-threaded context for sending messages (with a single JMS Session and
MessageProducer object). A connection to a JMS broker can be configured with any number of
senders. You can add any number of senders, but by default if no senders are explicitly configured,
a single sender called "default" will be created implicitly. Each sender can send messages to any
JMS destination (a queue or topic); the destination is specified on a per-message basis in the
mapping rule set (either hardcoded by specifying a constant value permessage type in themapping

Connecting Apama Applications to External Components 10.11.3 235

12 Using the Java Message Service (JMS)

rules or mapped from a destination field in the apama event). Messages sent by a single sender
with the same JMS headers ("priority" for example) will usually be delivered in order by the
provider (although this may not be the case if there is a failure), but the ordering of sends across
senders is undefined. Multiple senders can be created for a single connection to scale throughput
performance, or for sending messages with different senderReliabilitymodes. Each sender is
represented by its own correlator output channel.

Getting started with simple correlator-integrated
messaging for JMS
This section describes the steps for creating an Apama application that uses correlator-integrated
messaging for JMS where guaranteed delivery is not required. Apama provides an example
application in SoftwareAGDesigner that illustrates a simple use of correlator-integratedmessaging
for JMS in the APAMA_HOME\samples\correlator_jms\simple-send-receive directory.

To make correlator-integrated messaging for JMS available to an Apama project

1. From the File menu, choose New > Apama Project. This launches the New Apama Project
wizard.

2. In the New Apama Project wizard, give the project a name, and click Next. The second page
of the wizard appears, listing the available Apama resource bundles.

3. Apama's correlator-integratedmessaging for JMSmakes use of theApama correlator-integrated
adapter for JMS. From the Select required bundle instances list box, select the JMS
(Correlator-integrated support for the Java Message Service) bundle.

4. Click Finish.

The correlator-integrated adapter for JMS is added to the project's Connectivity and Adapters
node. In addition, all the necessary resources to support correlator-integrated messaging for JMS
are generated. Note, you can only add a single instance of the correlator-integrated messaging
adapter for JMS to an Apama project.

After you add the correlator-integrated adapter for JMS, you need to configure connections to a
JMS broker and configure senders and receivers.

Adding and configuring connections
When you first add the correlator-integrated messaging for JMS bundle to an Apama project, the
list of connections is initially empty. You can add one or more connection to JMS providers.

To establish a connection to a JMS broker

236 Connecting Apama Applications to External Components 10.11.3

12 Using the Java Message Service (JMS)

1. In the Project Explorer, expand the project'sConnectivity and Adapters node and then expand
the JMS (Correlator-integrated support for the Java Message Service) node.

2. Double-click the adapter's instance. This opens the instance's configuration in the editor for
the correlator-integrated adapter for JMS.

3. In the adapter editor'sSettings tab, click theAdd Connection button () to display the JMS
Configuration Wizard.

4. In the JMS Configuration Wizard, specify the following:

a. JMS Provider, select from the drop-down list.

b. Connection ID must be unique. The connection ID is used throughout the configuration
files andApama application to identify this broker connection. The value for the connection
ID should not contain any spaces. The connection ID is used when sending JMS messages
from theApama application. This Apama connection ID is not exposed to the JMS provider
in any way.

c. Description is optional and currently unused.

5. Click Next.

6. The Classpath details page of the JMS Configuration Wizard displays the default classpath
details for the JMS provider that you selected in the previous step. Add or modify the values
as appropriate for your environment.

To add or modify the classpath details:

a. TheSelect Installation Directory field lists the default directorywhere the JMS provider's
JAR files are located. You can change this directory by clicking the browse button (...).

b. To add an entry to the CLASSPATH, click the Add Classpath button (+) and add the new
value in the Add Classpath Variable dialog. You can also remove an entry by selecting it
and clicking the Remove Classpath button (x).

7. Click Next to proceed to the Connection Properties page of the JMS Configuration Wizard. If
necessary, add or modify the values as appropriate.

a. The Use JNDI checkbox indicates the usage of JNDI by JMS providers. For JMS providers
that use JNDI, the checkbox is selected. For providers that do not support JNDI, the checkbox
is not selected. It is not possible to change the value of theUse JNDI checkbox. If necessary,
you can edit the generated XML file after completing the wizard to change how the
connection factory is instantiated. For more information about customizing the XML, see
“XML configuration bean reference” on page 288 and Spring Beans documentation.

Connecting Apama Applications to External Components 10.11.3 237

12 Using the Java Message Service (JMS)

b. By default, the JMS ConfigurationWizard lists a subset of standard connection properties.
If Use JNDI is enabled, the connection details field shows JNDI Environment properties.
IfUse JNDI is not enabled, the connection details field shows ConnectionFactoryproperties.
To show the complete list of properties, select the Show advanced properties check box.

c. You can add and remove properties and you can modify the properties' values. To modify
a value, click in the Value column and enter the required information.

Note:If you are using JNDI to get the connection factory, it is usually necessary to first add
and configure a JNDI name for the connection factory you wish to use using the
administration tools provided by the JMS implementation you are using. For example, if
using Universal Messaging, this would be the Enterprise Manager tool. A commonmistake
when configuring the JNDI connection factory binding is to use localhost rather than a fully
qualified host name or IP address. For many JMS implementations, this will not permit
connections from hosts other than the one that the server is running on.

8. Click Finish.

The adapter editor is updated to display the new connection in the JMS Connections section.

After you establish a connection to a JMS broker, you need to add JMS receivers and specify
mapping configurations for receivers and senders.

Adding JMS receivers
JMS receivers are added to JMS connections.

To add a JMS receiver to a project

1. In the Project Explorer, double-click the project's correlator-integrated adapter for JMS instance.
This opens the instance configuration in Apama's adapter editor.

2. Select the desired JMS connection.

3. In the Static receivers section, click the Add destination button ().

This adds a receiver with a default name to the Name column and a default type (queue) to
the Type column.

4. If desired, you can edit the value in the Name column. You can edit the value in the Type
column by clicking the value and selecting a new type from the drop-down list at the right.

After you have configured the JMS receivers for each queue or topic of interest, you need to
configure how the received JMS messages will be mapped to Apama events.

238 Connecting Apama Applications to External Components 10.11.3

12 Using the Java Message Service (JMS)

Configuring receiver event mappings

Each event mapping for a received JMS message is configured by specifying the target Apama
event type, a conditional expression to determine which source JMS messages should be mapped
to this event type, and a set of mapping rules that populate the fields of the target Apama event
based on the contents of the source JMS message.

To configure an event mapping

1. Ensure that the Apama event types you wish to use for mapping have been defined in an EPL
file in your project.

2. In the Project Explorer, double-click the project's correlator-integrated adapter for JMS instance.
This opens the instance configuration in Apama's adapter editor.

3. In the adapter editor, select the Event Mappings tab.

4. On the adapter editor's Event Mappings tab in the Mapping Configuration section, select
the Receiver Mapping Configuration tab.

5. Click the down triangle next to the Add Event button () and select Add Event to display
the Event Type Selection dialog.

6. In the Event Type Selection dialog‘s Event Type Selection field, enter the name of the event.
As you type, event types that match what you enter are shown in the Matching items list.

7. In the Matching items list, select the name of the event type you want to associate with the
JMSmessage. The name of the EPL file that defines the selected event is displayed in the status
area at the bottom of the dialog.

8. Click OK.

This updates the display in the adapter editor's Event Mappings tab to show a hierarchical
view of the JMSmessage on the left (themapping source) and a hierarchical view of theApama
event on the right (themapping target). In addition, theExpression columndisplays a default
JUEL conditional expression that determines which JMS messages will use the specified
mapping rules. If you need to use a different conditional expression, you can edit the default.
For more information see “Using conditional expressions” on page 240.

9. Map the JMS message to the Apama event by clicking on the entity in the Message tree and
dragging a line to the entity in theEvent tree. For example, the simplestmapping for a standard
JMS TextMessagewould be a singlemapping rule from JMS Body in the JMSmessage to a single
string field in the Apama event. More complex mapping involves mapping the value of one
or more JMS headers or properties or parsing XML content out of the text message. For more
information see “Mapping Apama events and JMS messages” on page 248.

Connecting Apama Applications to External Components 10.11.3 239

12 Using the Java Message Service (JMS)

If a receiver mapping configuration lists multiple events, the mapper evaluates the expressions
from top to bottom, stopping on the firstmappingwhose conditional expression evaluates to true.
You can use the up and down arrows to change the order in which the evaluations are performed.

Using conditional expressions

When you configure event mappings for received JMS messages, you specify Apama event types
to which JMS messages will be mapped along with the mapping rules. The correlator-integrated
mapper for JMSuses JUEL expressions to indicatewhichmapping rules to use. JUEL (JavaUnified
Expression Language) expressions are a standard way to access data. When you specify an event
type for a receiver, Software AG Designer creates a default conditional expression that evaluates
a JMS property named MESSAGE_TYPE, testing to see if its value is the name of the specified Apama
event type. You can modify the default expression if you need to test for a different condition,
depending on the format of the JMS messages that Apama will be receiving.

Depending on your application's needs, you can create a conditional expression for the following
cases:

Match a JMS header

Match a JMS property

If the XML document root element exists

Match an XPath into the JMS message body

To specify a custom conditional expression

1. On theReceiver Mapping Configuration tab, click the expression in theExpression column.

2. Click the Browse button next to the expression. This displays the Conditional Expression
dialog, where you can edit the default expression.

3. In theCondition field, select the type of conditional expression youwant from the drop-down
list. Depending on your selection, the remaining available fields will vary.

4. Fill in the remaining fields as required. For some fields you select from drop-down lists, for
others you enter values directly. If you select the Custom type of conditional expression, you
can edit the expression directly. If a string literal in the expression contains a single or double
quotation mark, it needs to be escaped with the backslash character (\' or \").

5. ClickOK. The new expression is displayed in theExpression columnof theReceiver Mapping
Configuration tab.

Conditional operators in custom expressions. The following operators are available:

== equal to

!= not equal

240 Connecting Apama Applications to External Components 10.11.3

12 Using the Java Message Service (JMS)

lt less than

gt greater than

le less than or equal

ge greater than or equal

and

or

empty null or empty

not

A number of methods are available for common string operations such as the ones listed below.

contains()

endsWith()

equals()

equalsIgnoreCase()

matches()

startsWith()

For a complete list of the available methods as well as details for using these methods, see “JUEL
mapping expressions reference for JMS” on page 266.

Custom conditional expression examples. In most cases the decision about which Apama event
type to map to for a given JMS message is based on a JMS message property value or sometimes
a header, such as JMSType. In other cases, when there is no alternative, the decision is made by
parsing XML content in the document body and evaluating an XPath expression over it. Here are
some examples of typical conditional expressions.

JUEL boolean expression based on a JMS string property value:
${jms.property['MY_MESSAGE_TYPE'] == 'MyMessage1'}

JUEL boolean expression based on a JMS header value:
${jms.header['JMSType'] == 'MyMessage1'}

JUEL boolean expression based on the existence of the XML root element message1 in the body
of a TextMessage:
${xpath(jms.body.textmessage, 'boolean(/message1)')}

JUEL boolean expression based on testing the value of an XML attribute in the body of a
TextMessage:
${xpath(jms.body.textmessage, '/message/info/@messageType') == 'MyMessage'}

Connecting Apama Applications to External Components 10.11.3 241

12 Using the Java Message Service (JMS)

JUEL boolean expression for matching based on message type (TypeMessage, MapMessage,
BytesMessage, ObjectMessage, or Message):
${jms.body.type == 'TextMessage'}

The following boolean JUEL expressions show advanced cases demonstrating what is possible
using JUEL and illustrating how the syntax works with example XML documents.

JUEL expression that matches all messages:
${true}

“greater than” numeric operator:
${jms.property['MY_LONG_PROPERTY'] gt 120}

Using backslash to escape quotes inside a JUEL expression:
${jms.body.textmessage == 'Contains \'quoted\' string'}

Operators not, and, or, and empty:
${not (jms.property['MY_MESSAGE_TYPE'] == 'MyMessage1' or

jms.property['MY_MESSAGE_TYPE'] == 'MyMessage2') and
not empty jms.property['MY_MESSAGE_TYPE']}

Testing the value of an entry in the body of a MapMessage:
${jms.body.mapmessage['myMessageTypeKey'] == 'MapMessage1'}

An advanced XPath query (and use of JUEL double-quoted string literal and XPath
single-quoted string literal in the same expression)
${xpath(jms.body.textmessage, " (count(/message3/e) > 2) and

/message3/e[2] = 'there' and
(/message3/e[1] = /message3/e[3]) ")}

For an XML document such as
<message3><e>Hello</e><e>there</e><e>Hello</e></message3>

XPath namespace support:
${xpath(jms.body.textmessage, " /message4/*[local-name()='element1' and

namespace-uri()='http://www.myco.com/testns']/text() ") ==
'Hello world'}

For an XML document such as
<message4 xmlns:myprefix="http://www.myco.com/testns">

<element1>No namespace</element1>
<myprefix:element1>Hello world</myprefix:element1></message4>

Recursively parsing XML content nested in the CDATA section of another XML document:
${xpath(xpath(jms.body.textmessage, '/messageA/text()'),

'/messageB/text()') == 'MyNestedMessageType'}

242 Connecting Apama Applications to External Components 10.11.3

12 Using the Java Message Service (JMS)

For an XML document such as
<messageA><![CDATA[

<messageB>MyNestedMessageType</messageB>]]>
</messageA>

Check if a JMS string property value contains the specified value:
${jms.property['MY_MESSAGE_TYPE'].contains('Apama')}

Check if a JMS TextMessage body matches the specified regular expression:
${jms.body.textmessage.matches('.*inb*[ou]*r') }

For a table of expressions for getting and setting values in JMS messages and recommended
mappings to Apama event types, see “JUELmapping expressions reference for JMS” on page 266.

Adding a classpath variable entry
You can add an entry to the JMSprovider's connection classpath using theNewClasspathVariable
dialog.

To add a classpath variable entry

1. In the Project Explorer, double-click the project's correlator-integrated adapter for JMS instance.
This opens the instance configuration in Apama's adapter editor.

2. Select the desired JMS connection.

3. Expand the Classpath section and click the Add Classpath Variable button ().

This displays the New Classpath Variable dialog.

4. From the Choose Group drop-down list, select the group that represents the JMS connection.

5. If desired, add a Variable Name and Variable Value (either both fields must be filled in or
both must be blank).

When you create a variable in this dialog, you can use it as a shorthand way of specifying
locations when you want to add several JAR files from the same location. If you specify the
name of a previously defined variable in the Variable Name field, the Variable Value field is
automatically filled in.

6. In the Jar Name field, enter the name of the JAR file or click the Browse button and select the
JAR file.

7. Click OK.

Connecting Apama Applications to External Components 10.11.3 243

12 Using the Java Message Service (JMS)

Configuring sender event mappings
Each event mapping for a JMS message to be sent is configured by specifying the source Apama
event type, and a set of mapping rules that populate the target JMSmessage from the fields of the
source Apama event.

To configure an event mapping

1. Ensure that the Apama event types you wish to use for mapping have been defined in an EPL
file in your project.

2. If necessary, in the Project Explorer, double-click the project's correlator-integrated adapter
for JMS instance. This opens the instance configuration in Apama's adapter editor.

3. Select the JMS connection.

4. In the correlator-integrated adapter for JMS editor, select the Event Mappings tab.

5. On the adapter editor's Event Mappings tab, select the Sender Mapping Configuration tab.

6. On the Sender Mapping Configuration tab, click the down triangle next to the Add Event

button () and select Add Event to display the Event Type Selection dialog.

7. In the Event Type Selection dialog‘s Event Type Selection field, enter the name of the event.
As you type, event types that match what you enter are shown in the Matching items list.

8. In the Matching items list, select the name of the event type you want to associate with the
JMSmessage. The name of the EPL file that defines the selected event is displayed in the status
area at the bottom of the dialog.

9. Click OK.

This updates the display in the adapter editor's Event Mappings tab to show a hierarchical
view of the Apama event on the left (the mapping source) and a hierarchical view of the JMS
message on the right (the mapping target).

10. Create a mapping rule as follows:

a. If necessary, click on the event to be mapped in the Event Name column.

b. Click on the entity in the event tree and drag a line to the entity in the message tree.

For example, a simple mapping would be from a single string field in an Apama event to JMS
Body in the JMS message. More complex mappings might involve mapping an event field to
a specific JMS property. For more information see “Mapping Apama events and JMS
messages” on page 248.

244 Connecting Apama Applications to External Components 10.11.3

12 Using the Java Message Service (JMS)

11. Specify the message's JMS destination in either of two ways:

Specify a constant value in the event type's mapping:

For more information on specifying a constant value, see “Using expressions in mapping
rules” on page 249.

Specify a destination in an event field and map that field to the message:

Note destination is always specified as topic:name, queue:name, or jndi:name.

Using EPL to send and receive JMS messages
The EPL code necessary for using correlator-integrated messaging for JMS is minimal.

Initialization - Your application needs to notify the correlator that the application has been
injected and is ready to process events from the JMS broker.

1. Apama recommends that after all an application's EPL has been injected, the application
should send an application-defined "start" event using a .evt file. Using an event is clearer
and more reliable than enabling JMS message receiving using monitor onload() actions
because it is easier to guarantee that all EPL has definitely been injected and is in a good
state before the event is sent and JMS message receiving commences.

Software AG Designer, engine_deploy and other tools all ensure that .evt files are sent in
after all EPL has been injected.

Connecting Apama Applications to External Components 10.11.3 245

12 Using the Java Message Service (JMS)

2. The monitor that handles the application-defined start event (from step 1) should use this
JMS event object to notify correlator-integrated messaging for JMS that the application is
initialized and ready to receive messages, for example:
on com.mycompany.myapp.Start() {

com.apama.correlator.jms.JMS.onApplicationInitialized();
// Any other post-injection startup logic goes here too.

}

Note:
For simple applications, you can add the EPL bundle Automatic onApplicationInitialized
to your project (see also "Adding bundles to projects" in Using Apama with Software AG
Designer). This bundle will ensure that onApplicationInitialized is called as soon as the
entire application has been injected into the correlator. However, in cases where you need
to wait for a MemoryStore, database or another resource to be prepared before your
application is able to begin to process incoming messages, you should not use the bundle.
In these cases, you should write your own start event and application logic.

Receiving events - After configuring a JMS receiver, add EPL listeners for the events specified
in the mapping configuration.

Sending events - Send the Apama event associated with the JMS message in the Sender
Mapping Configuration by using the following syntax:
send event_name to "jms:senderId";

Note that senderId is typically "connectionId-default-sender" unless explicitly configured
with a different name. For example, to send an event to the default sender on a connection
called “MyConnection”, use the following:
send MyEvent to "jms:MyConnection-default-sender";

Formore information on specifying themessage's JMS destination, see “Configuring sender event
mappings” on page 244.

Getting started with reliable correlator-integrated
messaging for JMS
This section describes the steps for creating an Apama application that uses reliable
correlator-integratedmessaging for JMS in an environmentwhere guaranteed delivery is required.
In order to enable reliable JMSmessaging, you set specific JMS connection properties. In addition,
reliable JMS messaging makes use of Apama's correlator persistence feature, which specifies that
the correlator periodically writes its state to stable storage.

The focus here is on the most widely used reliability modes, which transparently tie JMSmessage
sending and receiving to the correlator's persistence feature.When correlator persistence is enabled,
the correlator periodically writes its state to stable storage. For more complex applications, there
are features to prevent message loss even when not using persistent monitors. See “Sending and
receiving reliably without correlator persistence” on page 299.

246 Connecting Apama Applications to External Components 10.11.3

12 Using the Java Message Service (JMS)

The steps described in this section build on the example created in “Getting started with simple
correlator-integrated messaging for JMS” on page 236.

Note:
If a license file cannot be found, the correlator is limited to BEST_EFFORT only messaging. See
"Running Apama without a license file" in Introduction to Apama.

To enable reliable correlator-integrated messaging for JMS for an Apama project

1. If necessary, create an Apama project that uses correlator-integrated messaging for JMS as
described in “Getting startedwith simple correlator-integratedmessaging for JMS” onpage 236.

2. If necessary, in the Project Explorer expand the project's Connectivity and Adapters node,
expand the correlator-integratedmessaging for JMS adapter node, and double-click the adapter
instance. This opens the instance's configuration in the adapter editor.

3. In the adapter editor, display the Settings tab and in the JMS Connection section, select the
JMS connection to use.

4. Click the Properties section to expand it.

5. In theProperties section, select EXACTLY_ONCE or AT_LEAST_ONCE forDefault receiver reliability.
Select EXACTLY_ONCE or AT_LEAST_ONCE for Default sender reliability. Each of these reliability
modes prevents message loss. AT_LEAST_ONCE is simpler and offers greater performance.
EXACTLY_ONCE adds detection and elimination of duplicate messages (if configured correctly),
which may be required for some applications.

6. If receivingwith EXACTLY_ONCE reliability, it is necessary to configure additional mapping rules
to specify an application-level unique identifier for each received message that will function
as the key for detecting functionally duplicate messages. To add these mapping rules, display
theEvent Mappings tab and in the source event tree,map the uniqueMessageId and (optionally,
but recommended) messageSourceId entities to appropriate values in the JMS message. For
example, they could be mapped to JMS message properties called UNIQUE_MESSAGE_ID and
MESSAGE_SOURCE_ID (or to nodeswithin an XMLdocument in themessage body).When sending
JMS messages, the mapping rules provide a way to expose the uniqueMessageId and
messageSourceId that Apama automatically generates for sending messages to whatever JMS
client will be receiving them, so that it can perform duplicate detection.

7. In your application's EPL code, add the persistent keyword before the monitor declarations
for monitors listening for Apama events associated with JMS messages.

8. In the project's Run Configuration, enable correlator persistence as follows.

a. In the Run Configuration dialog, select the Components tab.

b. Select the default correlator and click Edit. The Correlator Configuration dialog appears.

Connecting Apama Applications to External Components 10.11.3 247

12 Using the Java Message Service (JMS)

c. In the Correlator Configuration dialog, select the Persistence Options tab, select Enable
correlator persistence, and click OK.

Running a correlator in this way causes the it to periodically write its state to stable storage.

Formore information on correlator persistence, see "UsingCorrelator Persistence" inDeveloping
Apama Applications.

Mapping Apama events and JMS messages
After you specify which Apama events you want to associate with JMS messages, you need to
create mapping rules that associate Apama event fields with parts of the JMS messages. Apama's
adapter editor in Software AG Designer provides a visual mapping tool to create the mapping
rules. There are several approaches for how to map Apama events to the JMS messages - these
are explained in the topics below.

In addition, you can also specify transformation types:

XSLT transformation type.Use this approach when receiving JMSmessages containing XML
to change or simplify the structure of the XML document.

XPath XML transformation type.Use this approachwhen receiving JMSmessages containing
XML to specify values from the XML document that are to be used to populate the fields in
the target Apama event.

XMLDecode transformation type.Use this approachwhen receiving JMSmessages containing
XML and multiple rules are working off of the same XML source.

For more information, see “Specifying transformation types” on page 274.

Simple mapping for JMS messages
Use this approachwhen a simple Apama event field can be associatedwith a corresponding value
in the JMS message.

When creating a simple 1:1 mapping rule for an Apama event field to part of a JMS message that
contains a similar type, you can drag a line between the elements as described below.

To drag a line

1. In the editor for the correlator-integrated adapter for JMS, display the Event Mapping tab.

2. For each mapping rule, click on the entity you want to map and drag a line to the entity you
want to map it to.

Each rule is represented with a blue line between entities. If the types of the source and target do
not match, type coercion will be performed automatically at runtime.

248 Connecting Apama Applications to External Components 10.11.3

12 Using the Java Message Service (JMS)

Using expressions in mapping rules
Use this approach when sending or receiving JMS messages and you need to write a customized
JUEL expression for a mapping rule.

In many cases, a mapping rule requires customization. For example, if you map an event field to
a JMS Property field, then you need to specify which JMS property to use. In other cases, you
may want to use a constant value in a mapping rule or to create a JUEL expression, for example
to execute an XPath query on nested XML documents.

To add an expression to a mapping rule

1. Drag a mapping line from the entry in the source tree to the target. If one side of the mapping
rule requires a more specific expression, the Connection Participants dialog is displayed.

2. In the Connection Participants dialog's Type field, select an entry from the drop-down list.

3. In the next field enter the JMS Body type, the JMS Property name, a constant value, or a
custom JUEL expression. As you enter this information, the expression that will be used in the
mapping rule is displayed in the Expression Value field.

4. Click OK.

For a table of expressions for getting and setting values in JMS messages and recommended
mappings to Apama event types, see “JUELmapping expressions reference for JMS” on page 266.

Template-based XML generation
Use this approach when sending JMSmessages that contain XML. You assign a template that will
be used to generate an XML document. The template contains placeholders for each of the source
event fields whose values will replace the placeholders.

With the template-based approach tomapping, you canmap fields in anApama event to elements
and attributes in complex XML structures. The template consists of a sample XML document with
placeholders that will be replaced with values from the Apama event fields. When you assign a
template, these variables are displayed in the JMS message tree. You then map event fields to the
variables.

To assign a template for mapping

1. In the adapter editor'sEvent Mappings tab, right-click the JMS Body entry and selectAssign
Template. The Assign Template dialog appears.

2. In the XML Template file field, enter the name of the template file you want to use or click
the browse or down arrow button to locate the file.

When you specify a template file, the contents of the file are added to the text field in the dialog.

Connecting Apama Applications to External Components 10.11.3 249

12 Using the Java Message Service (JMS)

It is usually best to create the template file from a sample XML document before opening this
dialog, but it is also possible to perform this task from the dialog itself, for small XML
documents. To create the XML template, you define placeholders to represent field values that
you want the adapter to obtain from the input event. To define a placeholder, insert a dollar
sign ($) following by the placeholder name. After you click OK, the placeholder appears as a
new child of the target's JMS body node.

3. In the source event, click the Apama event field and drag a line to the desired element or
attribute in the target JMS message.

Adding multiple XPath mapping rules for a received XML
document
Use this to configure a set of XPathmappings, based on anXML schema or sample XMLdocument
using the Treat as dialog.

Using Treat As on JMS Body dialog - Sender

In the Mapping Definitions section of the Sender Mapping Configuration, when you right-click
JMS Body:Text Message and select the Treat as... option, the Treat As dialog appears. The
Treat As dialog allows you to select the type of JMS message to be sent.

To select a base type for the JMS body

1. Select the base type of the JMS body type in theBody Type field. If you are mapping to a bytes
message, the UTF-8 encoding is used to convert the character string to a bytes message.

2. Click OK.

Using Treat As on JMS Body dialog - Receiver

In theMapping Definitions section of theReceiver Mapping Configuration, when you right-click
JMS Body:Text Message and select the Treat as... option, the Treat As dialog appears. The
Treat As dialog allows you to select a base type for the JMS body to treat a node in the mapper.

To select a base type for the JMS body

1. Select the base type of the JMS body type in the Body Type field. If you select Text Message
or Bytes Message, you must also select one of the following options:

Select the String option if you have selected Text Message in the Body Type field.

Select the Bytes option if you have selected Bytes Message in the Body Type field. If the
JMS body is a bytes message, the UTF-8 encoding is used to convert it into a character
string.

Select the XML option and browse for the required XML file.

250 Connecting Apama Applications to External Components 10.11.3

12 Using the Java Message Service (JMS)

Select the XML using schema option and browse for the required schema file using the
TypeChooser dialog. See “Using the TypeChooser dialog” onpage 251 formore information
on using the Type Chooser dialog. The Element name is automatically populated if it is
defined for the chosen schema file.

2. Click OK.

Using the Type Chooser dialog

The Type Chooser dialog allows you to choose and display types from files in different source
locations. It supports:

The file types XML, XSD, WSDL, and Schema

Selecting a source file from a local and remote URL

Retrieving and displaying all types from the selected file

Global searches of specific types

WSDL service files and multilevel imports

To choose a type

1. Click the drop-down arrow beside the Source field to select a location where the system can
find the type definitions. The following options are available:

DescriptionOption

Displays the recently selected file locations.Recent

Selects a file in your local file system. Selecting this option displays the
Open dialog; it also determines which dialog is opened when you
subsequently select ... (Open).

Local File System

Selects a file in your workspace. Selecting this option displays the Select
Resource dialog in which you can filter and select a Schema, XML, XSD,

Workspace

or WSDL file extension. You can also select a custom file extension (if
any).

Selects a file from a web-based URL. Selecting this option displays the
Select Remote URL dialog in which you can specify the remote URL for
the file.

Remote URL

Selects a built-in type defined by the XML schema specification. Selecting
this option displays the appropriate choices in the bottom pane; it also

XML Schema

determines the system behavior when you subsequently select ...
(populates the XML schema types again).

You can search for these types of files: XML, XSD, andWSDL. In addition, you can use custom
file types (if any) and built-in XML Schema types.

Connecting Apama Applications to External Components 10.11.3 251

12 Using the Java Message Service (JMS)

2. Optionally, click ... to search for a file that you recently selected.

The bottom pane of the dialog displays the types available in the selected file.

3. To filter the types and display a specific type, enter the first few characters of the type that you
want to select in the type filter text field. The supported pattern characters are: ? for single
character and * for a string.

Using the XPath Helper
The XPath Helper enables you to generate and evaluate XPath expressions. It implements all
features defined in theW3CRecommendation for the XMLPath Language (XPath). See also http://
www.w3.org/TR/xpath/ (Version 1.0) and http://www.w3.org/TR/xpath20/ (Version 2.0).

Launching the XPath Helper

Whenyou open anXMLfile in the XMLeditor, anXMLmenu is shown in the SoftwareAGDesigner
menu bar.

Note:
In some cases, there might be different ways of launching the XPath Helper. Depending on the
context you launch it in you can use the Input document field to select a different XML
document.

To launch the XPath Helper

Do one of the following:

Open anXMLdocument in the XMLEditor, and from theXMLmenu, chooseXPath Helper.

Or select the XML document in the Project Explorer view, invoke the context menu and
then choose XML > XPath Helper.

The XPath Helper dialog is shown in both cases. The content of the current XML document is
shown in the left pane in the form of a tree, consisting of XML elements and their values.

The path to the current XML document is shown in the Input document field. If you want,
you can also select a different XML document using this field.

Note:
In some cases, you might not be able to use the Input document field, as its accessibility
depends on the context in which you launch the XPath Helper.

Setting node properties

The XPath Helper enables you to set a node in the document tree (shown in the left pane of the
XPath Helper dialog) as the target, key, or root node.

252 Connecting Apama Applications to External Components 10.11.3

12 Using the Java Message Service (JMS)

http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xpath20/

To set node properties

1. Right-click a node in the left pane of the XPath Helper dialog.

2. From the resulting context menu, choose one of the following commands:

DescriptionCommand

Sets the node as the target (indicated with a red circle).
Enables you to test whether the selected node is present

Set Target

in the result set of an XPath expression. It also enables you
to test whether that node appears once or multiple times
in the result set.

When you evaluate the XPath expression, the number of
hits found for the selected node is shown in the Results
pane. If the target node appears in the result set only once,
the Results pane displays the message “Reached target
uniquely”, and the target indicator (red circle) in the left
pane of the XPath Helper dialog changes to a check mark.
If the node appearsmore than once, it displays themessage
“Reached target” with the target indicator changed to a
check mark. If it does not appear at all, it displays the
message “Did not reach target” and the target indicator
remains as it is.

Removes the current target.Remove Target

Sets the selected node as the key (indicated by a yellow
key symbol) anddisplays the appropriate XPath expression
in the text area of the XPath Expression tab.

Set Key

Each time you set a key, a text box is shown next to the
key symbol where you can enter a condition or constraint.

You can also enter a condition or constraint in the text area
of the XPath Expression tab.

Removes the current key.Remove Key

Sets the selected node as the root. Only the subtree starting
from this node will be considered as the input parameter
for evaluating and generating XPath expressions.

Set Root

Removes the current root.Remove Root

Generating XPath expressions

The XPath Helper enables you to generate XPath expressions. XPath expressions are used to select
nodes or node sets in an XML document.

Connecting Apama Applications to External Components 10.11.3 253

12 Using the Java Message Service (JMS)

To generate an XPath expression

1. In the document tree in the left pane of the XPathHelper dialog, double-click a node to display
the expression on the XPath Expression tab.

2. Select one of the following XPath generation options from the corresponding button at the top
of the XPath Expression tab (initially Prefix is shown as the button name, indicating that this
option is currently selected):

DescriptionOption

Includes prefixes in the generatedXPath expression. TheXPath
Helper resolves these prefixes to their corresponding

Prefix

namespaces, depending upon the namespace entries listed on
the Namespaces tab.

Includes the required namespaces in the generated XPath
expression. This generated XPath expression is independent
of the list of namespaces on the Namespaces tab.

Namespace

Generates an XPath expression that is independent of the
prefixes and namespaces used in the input document.

Local Name

3. In addition, you can select the following options:

DescriptionOptionIcon

Displays 10 recent XPath expressions. You
can select a different expression for
evaluation.

Recent XPath
Expressions

Inserts an index in the XPath expression
to identify the position of the element.

Use Index

Generates an XPath expression that
invokes the text() function in the last
location step.

Invoke Text Function

Limits the number of location steps in an
XPath expression anddetermineswhether
the expression is relative or absolute.

Select Node Depth

With each selection, the appropriate XPath expression is shown in the text area of the XPath
Expression tab, ready to be evaluated.

Note:
You can also modify the default generated XPath expression in the text area.

254 Connecting Apama Applications to External Components 10.11.3

12 Using the Java Message Service (JMS)

Adding and removing namespaces

The XPath Helper dialog displays a list of namespaces on the Namespaces tab. They are used
for evaluating the XPath expression. You can add or remove namespace entries from this tab.

To add or remove a namespace

1. Select the Namespaces tab in the right pane of the XPath Helper dialog.

A list of all namespaces found in the root node of the document tree is shown.

2. To add a namespace:

a. Click .

b. In the resulting Add Namespace dialog, specify a prefix and a namespace URI.

c. Click OK.

3. To remove a namespace:

a. On the Namespaces tab, select the namespace you want to remove.

b. Click .

c. Click OK to confirm the removal of the namespace.

Evaluating XPath expressions

After you have generated an XPath expression, you can evaluate it.

To evaluate an XPath expression

1. Either use the expression that is currently shown on the XPath Expression tab, or click
and select another expression.

2. Select either Version 1.0 or Version 2.0 of theW3CRecommendation for the XMLPath Language
(XPath). To do so, use the drop-down list of the corresponding button at the top of the XPath
Expression tab (initially Version 2.0 is shown as the button name, indicating that this option
is currently selected).

3. Do one of the following:

Click Evaluate to evaluate the generated expression.

Connecting Apama Applications to External Components 10.11.3 255

12 Using the Java Message Service (JMS)

Or select Auto Evaluate to enable XPath Helper to continuously display results as you
double-click a node in the document tree or manually enter the XPath expressions.

The XPath Helper evaluates the expression according to the selected criteria and shows the
results in the Results pane, in a tree format. You can expand and collapse the tree if it has
subnodes.

Using convention-based XML mapping with JMS messages
Use this approach to parse or generate XML documents by using event definitions that follow
specific conventions to implicitly encode the structure of the XMLdocument. This approach allows
mapping of sequences to elements of the same type. It avoids the need for XPath, but does impose
some limitations on the XML naming and structure.

The topics below explain how to use convention-based XML mapping with JMS messages.

Convention-basedmapping allows XML documents to be created or parsed based on a document
structure encoded in the definition of the source or target Apama event type.

The first stage when using convention-based mapping is to examine the structure of the XML
document, and create an event definition to represent its root element, with fields for each attribute,
text node, sub-element or sequence (of attributes, text nodes or sub-elements). The actual names
of the event types are not important, but the event field names and typesmust follow the following
conventions:

XML attributes can be represented by any EPL simple type such as string or integer. The
name used should be preceded by an underscore, for example boolean _flag;.

XML text nodes are represented by either:

A field inside an Apama event representing the parent of the element containing the text,
named after the element that encloses the text such as string myelement;. This avoids the
need to create an event type to represent the element in cases where the element only
contains a text node, and no attributes or children. The field type may be any primitive
EPL type (for example, string or integer).

A field inside an Apama event representing the element that directly contains the text,
named xmlTextNode. This is necessary in cases where an Apama event type is needed to
represent the element so that attributes and/or child elements can also be mapped. The
field type may be any primitive EPL type (for example, string or integer).

XML elements containing attributes or sub-elements of interest are represented by a field of
an event type which follows these same conventions. The event type can have any name, but
the field must be named after the element, for example, MyElementEventType myelement.

XML attributes, text nodes or elements which may occur more than once in the document are
represented by a sequence field of the appropriate primitive or event type, named after the
element, for example, sequence<string> myelement or sequence<MyElement> myelement.

A field of the optional type is processed in the sameway as the contained type. If the optional
value is empty, then it is not processedwhen creating XML. Similarlywhen creating anApama

256 Connecting Apama Applications to External Components 10.11.3

12 Using the Java Message Service (JMS)

event fromXML, if a node corresponding to an optional field is absent, then the fieldwill have
an empty value.

Some special cases to be aware of when naming fields to match element/attribute names are:

XML nodes which are inside an XML namespace are always referenced by their local name
only (the namespace or namespace prefix is ignored).

When generating an XML document, each field in the event will be processed in order and
used to build up the output document.

When parsing an XML document, each field in the event will be populated with whatever
XML content matches the field name and type (based on the conventions above); any XML
content that is not referenced in the event definition will be silently ignored.

XML node names that are Apama EPL keywords (such as <return>) must be escaped in the
event definition using a hash character, for example, string #return;.

XMLnode names containing any character that is not a valid EPL identifier character (anything
other than than a-z, A-Z, 0-9 and _) must be represented using a $hexcode escape sequence.
Of the characters that are not valid EPL identifier characters, only the hyphen and dot are
supported. Note that the hexcode based escape sequences are case sensitive. For representing
the hyphen or dot use the following:

Hyphen (-) is represented as $002d.

Dot (.) is represented as $002e.

You can generate event type definitions automatically from an XML schema using Software AG
Designer. See "Creating new event definition files for EPL applications" in Using Apama with
Software AG Designer.

Limitations of convention-based XML mapping

In this release it is not possible to generate documents that contain elements in different XML
namespaces (although when parsing this is not a problem).

The following limitations apply to the Apama event definitions that can be used to generate XML:

Dictionary event field types are not supported.

If an event field is of type sequence, the sequence can contain simple types or events. The
sequence cannot contain sequences of sequences or sequences of dictionaries.

Sequences of optional types are not supported.

Convention-based JMS message mapping example

The following example shows how to parse a JMSmessagewhose body contains anXMLdocument
and map it to an Apama event called MyEvent.

Consider a JMS message whose body contains the following XML document:

Connecting Apama Applications to External Components 10.11.3 257

12 Using the Java Message Service (JMS)

<?xml version='1.0' encoding='UTF-8'?>
<myroot xmlns:p='http://www.myco.com/dummy-namespace'>
<myelement1>An element value</myelement1>
<myelement2 myattribute='123' myboolattribute='true'>456</myelement2>

<ignoredElement>XML content that is not included in the event definition
is ignored</ignoredElement>

<e1>Hello</e1>
<e1>there</e1>
<e-2 e2att='value1'><subElement>e2-sub-value1</subElement></e-2>

<e-2 e2att='value2'><subElement>e2-sub-value2</subElement></e-2>
<e1>world</e1>
<namespacedElement xmlns='urn:xmlns:foobar'>My namespaced

text</namespacedElement>
<p:namespacedElement>My namespaced text 2</p:namespacedElement>
<namespacedElement>My non-namespaced text 3</namespacedElement>
<return>Element whose name is an EPL keyword</return>
</myroot>

Define the Apama event MyEvent as follows:
event MyElement2
{

string _myattribute;
boolean _myboolattribute;
string xmlTextNode;

}
event E2
{

string _e2att;
string subElement;

}
event MyRoot
{

string myelement1;
MyElement2 myelement2;
sequence<string> e1;
sequence<string> namespacedElement;
string #return;
sequence<E2> e$002d2;

}
event MyEvent
{

string destination;
MyRoot myroot;

}

Note that the field names and types matter but the event type names do not.

The document above would be parsed to the following Apama event string:
MyEvent("queue:MyQueue",
MyRoot("An element value",
MyElement2("123",true,"456"),
["Hello","there","world"],
["My namespaced text","My namespaced text 2","My non-namespaced text 3"],
"Element whose name is an EPL keyword",
[E2("value1","e2-sub-value1"),E2("value2","e2-sub-value2")]

))

258 Connecting Apama Applications to External Components 10.11.3

12 Using the Java Message Service (JMS)

The exact same event definitions could be used in the other direction for creating anXMLdocument,
although the node order will be slightly different from that of the document shown above (based
on the field order) and everything would be in the same XML namespace.

For the above example, the following XML is generated with http://www.example.com/myevent as
the namespace and p as the namespace prefix:
<p:myroot xmlns:p="http://www.example.com/myevent">

<p:myelement1>An element value</p:myelement1>
<p:myelement2 myattribute="123" myboolattribute="true">456</p:myelement2>
<p:e1>Hello</p:e1>
<p:e1>there</p:e1>
<p:e1>world</p:e1>
<p:namespacedElement>My namespaced text</p:namespacedElement>
<p:namespacedElement>My namespaced text 2</p:namespacedElement>
<p:namespacedElement>My non-namespaced text 3</p:namespacedElement>
<p:return>Element whose name is an EPL keyword</p:return>
<p:e-2 e2att="value1">

<p:subElement>e2-sub-value1</p:subElement>
</p:e-2>
<p:e-2 e2att="value2">

<p:subElement>e2-sub-value2</p:subElement>
</p:e-2>

</p:myroot>

Using convention-based XML mapping when receiving/parsing messages

To map a received JMS message to an Apama event using the convention-based approach

1. Create an Apama event type with fields that correspond in type and order to the structure of
the XML document. Ensure that the target event type you are mapping to has a field of this
type and that the field's name is the same as the name of the root element in the expected XML
document.

2. Drag amapping line from the JMSmessage node containing the XML document (for example,
the JMS Body) to the target Apama event field that has the same name as the root element in
the XMLdocument. Assuming the JMSmessage contains anXMLdocument (a string beginning
with an open angle bracket character "<"), the document will be parsed and the results will
be used to populate the fields of the target event.

Using convention-based XML mapping when sending/generating messages

To map an Apama event to a JMS message using the convention-based approach

1. Create an Apama event type with fields that correspond in type and order to the structure of
the XML document. To use convention-based XML mapping, the event type representing the
XML document must be nested inside a parent event type, so ensure that such a parent event
type has been created. Typically, the parent event type might have two fields, a string field
representing the JMSdestination, and an eventfield representing the root of the XMLdocument.

Connecting Apama Applications to External Components 10.11.3 259

12 Using the Java Message Service (JMS)

2. In the adapter editor'sEvent Mappings tab, click theAdd Event button () to add amapping
for the desired parent event type (that is, the event type that contains the event field that
represents the XML root element).

3. In the adapter editor's Event Mappings tab, right-click the Apama event that represents the
root node of theXMLdocument and selectAdd Computed Node to display theAddComputed
Node dialog.

4. In the Add Computed Node dialog's Select Method field, select Convert to XML from the
drop-down list. The dialog is updated to show more information.

You can specify a namespace and namespace prefix for the generatedXMLdocument if desired,
or else leave them blank. By default, the Include empty fields option is enabled. This specifies
that empty XML nodes will be generated when empty EPL string fields are encountered
within an Apama event. This option does not affect empty strings within a sequence of EPL
strings. If you clear the check box to disable the option, empty XMLnodeswill not be generated.

5. Click OK.

In the mapping tree, an entry of type Convert To XML is added to the selected event node.

6. Drag amapping line from theConvert To XML entry to the desired node in the XMLmessage,
for example, to JMS Body.

Combining convention-based XML mapping with template-based XML generation

It is also possible to combine the convention-based approachwith template-basedXMLgeneration.
An XML template can be used to generate the top-level XML document, while one or more
placeholders can be added and mapped to XML sub-document strings generated by
convention-based XML mapping.

To combine these approaches

1. Right-click a source event (representing an XML root element) or sequence (representing a list
of XML elements) and click Add Computed Node.

2. Select Convert to XML from the drop-down list and click OK. This will result in a Convert
To XML node representing a generated XML string.

3. Drag a mapping line from that node to the target $placeholder node specifying where the
XML snippet should be inserted into the top-level document.

Add Computed Node dialog

The Add Computed Node dialog provides an efficient means of adding customized entries to the
mapping rules in the Mapping Definitions section. This feature helps you take advantage of the
following benefits:

260 Connecting Apama Applications to External Components 10.11.3

12 Using the Java Message Service (JMS)

You do not need to re-enter the custom entries each time you want to map a node.

You can modify the entry dynamically for all mappings rules generated from a node at once,
by simply modifying the entry.

To add customized entries to the mapping rules

1. By default, the Type is selected as Computed Node. Depending on the customization you
want to add before the mapping, select one of the following from the drop-down list in the
Select method field:

String.concat to concatenate the specified string to the end of this string. The Display
name field appears with a default value. Edit the value if you want. Enter the String in the
String field that you want to concatenate in the Method Arguments section.

String.contains to determine whether a specific substring is contained within the string.
A Boolean value, true is returned if the substring is contained within the string; false
otherwise. The Display name field appears with a default value. Edit the value if you
want. Enter the Substring in the Substring field in the Method Arguments section.

String.endsWith to determine whether the string ends with a specific suffix. A Boolean
value, true is returned if the string ends with the specified suffix; false otherwise. The
Display name field appears with a default value. Edit the value if you want. Enter the
suffix string in the Suffix field in the Method Arguments section.

String.replaceAll to replace each substring of this string that matches the given regular
expression with the given replacement String. The Display name field appears with a
default value. Edit the value if youwant. Enter the regular expression and the replacement
Strings in the Regex and Replacement fields of the Method Arguments section.

String.startsWith to determine whether the string starts with a specific prefix. A Boolean
value, true is returned if the string starts with the specified prefix; false otherwise. The
Display name field appears with a default value. Edit the value if you want. Enter the
suffix string in the Suffix field in the Method Arguments section.

String.subString to obtain a specific substring within a given string. The substring is
specified by a beginIndex (inclusive) and an endIndex (exclusive). TheDisplay name field
appears with a default value. Edit the value if youwant. Enter the begin index in the Begin
index field and end index in the End index field in the Method Arguments section.

String.toLowerCase to convert all of the characters in this String to lower case. TheDisplay
name field appears with a default value. Edit the value if you want.

String.toUpperCase to convert all of the characters in this String to upper case. TheDisplay
name field appears with a default value. Edit the value if you want.

String.trim to return a copy of the String, with leading and trailing whitespace omitted.
The Display name field appears with a default value. Edit the value if you want.

XPath if yourmapping requires an XPath transformation. TheDisplay namefield appears
with a default value. Edit the value if you want. In the Method Arguments section, enter

Connecting Apama Applications to External Components 10.11.3 261

12 Using the Java Message Service (JMS)

the expression manually or click Browse and select the name of the file that contains a
definition of the XML structure (the drop-down arrow allows you to select the scope of
the selection process). Click OK. The XPath Helper opens, showing the XML structure of
the selected file in the left-hand pane. Build the desired XPath expression using the XPath
Helper.

XML transformation if yourmapping requires an XSLT transformation. TheDisplay name
field appears with a default value. Edit the value if you want. In the Method Arguments
section, enter the expression manually or click Browse to locate the file of the stylesheet
to use. You can also use the drop-down arrow to create a new stylesheet or select from the
local file system or workspace.

XMLDecode if your mapping requires parsing information from an XML document, and
you want to use Apama's XMLDecode transformation which offers higher performance
than XPath transformation. See “XMLDecode” on page 263 for more information on
XMLDecode properties. The Display name field appears with a default value. In the
Method Arguments section:

In the Node path field, specify a valid node path. For example,
/root/someelement[2]/text().

In theProperties field, specify the properties as property=value. If youwant to specify
multiple properties, specify the properties separated by a semicolon.

Convert To XML if you want to convert an event to XML, or to convert an event field that
is an event type or sequence type to XML. The Convert to XML method uses
convention-based mapping. See “Using convention-based XML mapping with JMS
messages” on page 256 for more information. To use convention-based XMLmapping, the
event type representing the XML document must be nested inside a parent event type, so
ensure that such a parent event type has been created. Typically, the parent event type
might have two fields, a string field representing the JMS destination, and an event field
representing the root of the XMLdocument. TheDisplay name field appearswith a default
value.

In the Method Arguments section:

Optionally, type a namespace for the generated XML document in the Namespace
field. For example, http://www.example.com/myevent.

Optionally, type a namespace prefix for the generated XML document in the Prefix
field. See “Convention-based JMS message mapping example” on page 257 for more
information.

By default the Include empty fields option is enabled. This specifies that empty XML
nodes will be generated when empty EPL string fields are encountered within an
Apama event. This option does not affect empty strings within a sequence of EPL
strings. If you clear the check box to disable the option, empty XML nodes will not be
generated.

The expression that will be used in the mapping rule is displayed in the Expression value
field.

262 Connecting Apama Applications to External Components 10.11.3

12 Using the Java Message Service (JMS)

2. Click OK.

XMLDecode

The XMLDecode is similar to XML codec functionality intended to be used in the correlator JMS.
The XMLDecode uses the Least Recently Used (LRU) cache to avoid repeating the decode when
multiple rules are working off of the same XML source. For example, JMS body.

The XMLDecode supports the following properties:

skipNullFields - Default value is True.

trimXMLText - Default value is False.

generateTwinOrderSuffix - Default value is True.

generateSiblingOrderSuffix - Default value is False.

logFlattenedXML - Default value is False.

namespaceAware - Default value is False.

xmlField - This property needs to be set only if nested XML within a CDATA section needs to
be parsed.

sequenceField

ensurePresent

separator

parseNode

See “The XML codec IAF plug-in” on page 507 for a detailed description of XMLDecode properties.

For properties with multiple values, use a comma (,) to separate the values.

For multiple properties, use a semicolon (;) as a separator and the equals sign (=) to separate the
key and value.

The XMLDecode functionality can be used in two ways:

As a mapping action. See “Specifying transformation types” on page 274.

As a mapping method using the Add Computed Node dialog. See “Add Computed Node
dialog ” on page 260.

Handling binary data
JUEL mapping expressions can use the following methods on binary data.

The byteArrayToBase64()method takes a byte array as the input parameter and returns the Base64
encoded string. Following is an example of mapping byte array data to a Base64-encoded string,
which can be mapped to an Apama string field.

Connecting Apama Applications to External Components 10.11.3 263

12 Using the Java Message Service (JMS)

${byteArrayToBase64(jms.body.bytesmessage)}

The base64ToByteArray()method takes a Base64-encoded string as an input parameter and returns
a byte array. For example:
${base64ToByteArray(apamaEvent['body'])}

The javaObjectToByteArray()method takes a serializable Java object as the input parameter and
returns a serialized byte array. In the following example, the body of jms.objectmessage is serialized
into a byte array, the byte array is then encoded into a Base64-encoded string, and that string can
be mapped to a string field in an Apama event.
${byteArrayToBase64(javaObjectToByteArray(jms.body.objectmessage))}

The byteArrayToJavaObject()method takes a byte array as the input parameter and returns a
deserialized Java object. In the following example, the string field of an Apama event, which is
a Base64-encoded string, is converted into a byte array. The byte array is then deserialized into a
Java object and can be mapped, for example, to the body of jms.objectmessage.
${byteArrayToJavaObject(base64ToByteArray(apamaEvent['body']))}

These binary methods can be used by creating custom expressions. In the Event Mappings tab,
right-click a <Custom> node and select Add Node to display the Add Node dialog.

Note:
In these binarymethods, if the argument passed to themethod is null or empty then themethod
returns null. If a null value would be set for a field in an Apama event then the field is set to
the default value for the field's type, for example, a string field is set to the empty string, "".

Using custom EL mapping extensions
Apama's correlator-integrated adapter for JMS uses an expression-based mapping layer to map
betweenApamaevents and externalmessagepayloads. The expressions use JavaUnifiedExpression
Language (EL) resolvers and methods, which must be registered to the mapping layer. Apama
includes a set of EL resolvers and EL methods that are registered for you and that you can use in
mapping expressions. If you want you can register your own EL resolvers and EL methods and
then use them as custom mapping extensions.

See theApamaDocAPI reference information for details about theAPIsmentioned in the following
steps. An example that uses these APIs is in the samples\correlator_jms\mapping-extensions
folder of your Apama installation directory.

To register and use custom mapping extensions

1. Define a public class that imports com.apama.adapters.el.api.ELMappingExtensionProvider
and com.apama.adapters.el.api.ELMappingExtensionManager.

2. Implement ELMappingExtensionProvider.

3. Override the ELMappingExtensionProvider.registerExtensions()method and register each
custom EL method and each custom EL resolver with a call to

264 Connecting Apama Applications to External Components 10.11.3

12 Using the Java Message Service (JMS)

ELMappingExtensionManager.registerMethod() or
ELMappingExtensionManager.registerResolver(), as appropriate. For example:
package com.apama.test;

import com.apama.adapters.el.api.ELMappingExtensionManager;
import com.apama.adapters.el.api.ELMappingExtensionProvider;

public class MyStringMethods implements ELMappingExtensionProvider {
// Register EL methods:
@Override
public void registerExtensions(ELMappingExtensionManager manager) {

throws Exception {
manager.registerMethod("reverse",

getClass().getMethod("reverse", String.class));
manager.registerMethod("p:prefix",

getClass().getMethod("prefix", String.class, String.class));
}

public static String reverse(String str) {
return new StringBuilder(str).reverse().toString();

}

public static String prefix(String str, String prefix) {
if (str != null) {

return prefix + str;
} else {

return prefix;
}

}
}

4. Register the list of mapping extension providers by adding a
com.apama.adapters.el.config.ELMappingExtensionProviderList bean to the XML
configuration, and setting its mappingExtensionProviders property. For example:
<bean class="com.apama.adapters.el.config.ELMappingExtensionProviderList">

<property name="mappingExtensionProviders">
<list>

<bean class="com.apama.test.MyStringMethods"></bean>
<bean class="com.apama.test.MyIntegerMethods"></bean>
…

</list>
</property>

</bean>

The place to set this bean XML snippet is as follows: specify the
com.apama.adapters.el.config.ELMappingExtensionProviderList bean in an existing spring
XML file or in a separate file in the same location as other spring files. The recommended
location is the jms-global-spring.xml file.

5. Use mapping extensions in expressions inside the source expressions of mapping rules for
both send and receive mappings.

For example, consider a custom staticmethod that takes a string parameter, returns the reverse
string, and is registeredwith the name my:reverse. You can use it in amapping rule as follows:
<mapping:rule

Connecting Apama Applications to External Components 10.11.3 265

12 Using the Java Message Service (JMS)

source="${my:reverse(apamaEventType['test.MyMessage'].apamaEvent['body'])}"
target="${jms.body.textmessage}" type="BINDING_PARAM"/>

In this example, my:reverse is applied to the expression
"apamaEventType['test.MyMessage].apamaEvent['body']". This means that the value of the
input parameter for the my:reversemethod will be the value returned by the expression
"apamaEventType['test.TextMessage'].apamaEvent['body']", which returns the value of the
"body" field of the "test.MyMessage" event. The result is that the value of the source expression
"my:reverse(apamaEventType['test.MyMessage'].apamaEvent['body'])"will be the reverse
of the string contained in the "body" field.

You can use SoftwareAGDesigner to add custom expressions to eventmappings. In theEvent
Mappings tab of your adapter editor, right-click the <Custom> node and selectAdd Node. This
displays the Add Node dialog, which prompts you to enter a custom expression.

6. Ensure that the .jar file that contains yourmapping extension providers is on the appropriate
classpath.

Use a <jms:classpath> element to enclose the ELMappingExtensionProviderList bean.

JUEL mapping expressions reference for JMS
The expressions that can be used to get or set elements of a JMS message are listed below, along
with the set of Apama field types that are recommended for use when mapping when sending or
receiving JMS messages:

Compatible Apama field
type(s) when receiving

Compatible Apama field
type(s) when sending

JMSmessage element / JMSEL
expression

dictionary<string, string>dictionary<string, string>Dictionary of all message
headers

jms.headers

string (with topic:/queue:
prefix)

string (with
jndi:/topic:/queue: prefix)

JMSDestination

jms.header['JMSDestination']

string (with topic:/queue:
prefix)

string (with
jndi:/topic:/queue: prefix)

JMSReplyTo

jms.header['JMSReplyTo']

stringstringJMSCorrelationID

jms.header[
'JMSCorrelationID']

stringstringJMSType

jms.header['JMSType']

integer, stringinteger, stringJMSPriority

266 Connecting Apama Applications to External Components 10.11.3

12 Using the Java Message Service (JMS)

Compatible Apama field
type(s) when receiving

Compatible Apama field
type(s) when sending

JMSmessage element / JMSEL
expression

jms.header['JMSPriority']

integer, stringinteger, string (must be a
number (though display string

JMSDeliveryMode

jms.header['JMSDeliveryMode'] can be used (only) when
mapping a constant value in
tooling); 1=NON_PERSISTENT,
2=PERSISTENT)

N/A when receivinginteger, string (in
milliseconds from the time JMS
sends the message)

JMSTimeToLive

jms.header['JMSTimeToLive']

integer, string (in
milliseconds since the epoch)

N/A when sendingJMSExpiration

jms.header['JMSExpiration']

boolean, stringN/A when sendingJMSMessageID

jms.header['JMSMessageID']

integer, string (in
milliseconds since the epoch)

N/A when sendingJMSTimestamp

jms.header['JMSTimestamp']

stringN/A when sendingJMSRedelivered

jms.header['JMSRedelivered']

dictionary<string, string>dictionary<string, string>Dictionary of all message
properties

jms.properties

stringstringString Message Property

jms.property['propName']

boolean, stringbooleanBoolean Message Property

jms.property['propName']

integer, stringintegerLong Message Property

jms.property['propName']

float, stringfloatDouble Message Property

jms.property['propName']

stringNot supportedByte Message Property

Connecting Apama Applications to External Components 10.11.3 267

12 Using the Java Message Service (JMS)

Compatible Apama field
type(s) when receiving

Compatible Apama field
type(s) when sending

JMSmessage element / JMSEL
expression

jms.property['propName']

stringNot supportedShort Message Property

jms.property['propName']

stringNot supportedInteger Message Property

jms.property['propName']

stringNot supportedFloat Message Property

jms.property['propName']

Same as other propertiesSame as other propertiesJMSX Property

jms.xproperty['propName']

dictionary<string, string>dictionary<string, string>Dictionary of all JMSX
properties

jms.xproperties

string, event [1]string, event [1]TextMessage Body

jms.body.textmessage

dictionary<string, string>dictionary<string, string>MapMessage Body

jms.body.mapmessage

stringstringMapMessage Body Entry

jms.body.mapmessage['mapKey']

dictionary<string, string>dictionary<string, string>ObjectMessage Body with a
serializable java.util.Map
<Object,Object>

jms.body. objectmessage

sequence<string>sequence<string>ObjectMessage Body with a
serializable java.util.List
<Object>

jms.body. objectmessage

stringN/AObjectMessage Body with any
serializable Object

jms.body. objectmessage

268 Connecting Apama Applications to External Components 10.11.3

12 Using the Java Message Service (JMS)

Compatible Apama field
type(s) when receiving

Compatible Apama field
type(s) when sending

JMSmessage element / JMSEL
expression

string, sequence<string>,
dictionary<string, string>

string, sequence<string>,
dictionary<string, string>,
event

BytesMessage Body

jms.body.bytesmessage

stringstringTextMessage, MapMessage,
BytesMessage, ObjectMessage,
Message

jms.body.type

[1] If a string from the JMS message is mapped to an event, the string should be either of:

An Apama event string (as generated by the Apama Event Parser), whose event type matches
the type of the field it is being mapped to in the source/target Apama event.

An XML document starting with a < character, whose structure matches what is implied by
the event type definition it is being mapped to (see “Using convention-based XML mapping
with JMS messages” on page 256 for more information)

Note, the JMS headers JMSMessageID, JMSRedelivered and JMSDeliveryMode are supported for
completeness but will not normally be required by Apama applications, since built-in duplicate
detection based on application-level unique identifiers replaces the first two, and rather than
overriding the per-message delivery mode it is usually best to use the default
PERSISTENT/NON_PERSISTENT setting implied by the sender's senderReliability value.

Resolver expressions for obtaining ids

The following tables describe resolver expressions for obtaining sender, receiver, and connection
IDs. You cannot use these expressions to set ids.

DescriptionFor sending messages

Get the sender id of the sender that is sending the
event from your Apama application to a JMS
broker.

${jmsSender['senderId']}

Get the connection id of the sender that is sending
the event from your Apama application to a JMS
broker.

${jmsSender['connectionId']}

DescriptionFor receiving messages

Get the receiver id of the receiver in your Apama
application that received the JMS message from a
JMS broker.

${jmsReceiver[‘receiverId']}

Connecting Apama Applications to External Components 10.11.3 269

12 Using the Java Message Service (JMS)

DescriptionFor receiving messages

Get the connection id of the receiver in yourApama
application that received the JMS message from a
JMS broker.

${jmsReceiver['connectionId']}

String methods in mapping expressions

In JUEL mapping expressions, you can use certain string methods in the parts of the mapping
expressions that evaluate to string types. The table below describes the stringmethods you can
use. These methods use the same-named java.lang.Stringmethods. The mapping expressions
are evaluated first to obtain a result string and then any specified string method is applied. You
use these functions in the following way:
${some_expression.substring(5)}

In the previous format, some_expression is an expression that evaluates to a string. In the following
examples, f1 is a field of type string:
${apamaEvent['f1'].toString().contains('in')}
${jms.body.textmessage.toString().startsWith('sample')}

DescriptionString method

Returns a boolean value that indicates
whether the result string is equal to the
specified string, ignoring case.

equalsIgnoreCase('str')

Returns a boolean value that indicates
whether the result string contains the
specified string.

contains('str')

Returns a boolean value that indicates
whether the result string matches the
specified Java regular expression.

matches('regex')

Returns a boolean value that indicates
whether the result string starts with the
specified string.

startsWith('str')

Returns a boolean value that indicates
whether the result string ends with the
specified string.

endsWith('str')

Converts the result string to lowercase and
returns it.

toLowerCase()

Converts the result string to uppercase and
returns it.

toUpperCase()

270 Connecting Apama Applications to External Components 10.11.3

12 Using the Java Message Service (JMS)

DescriptionString method

Appends the result string with the specified
string and returns this result.

concat('str')

In the result string, for each substring that
matches regex, this method replaces the

replaceAll('regex','regexReplacement')

matching substring with regexReplacement.
The string with replacement values is
returned.

The regexReplacement string may contain
backreferences to matched regular
expression subsequences using the \ and $
characters, as described in the Java API
documentation for
java.util.regex.Matcher.replaceAll(). If
a literal $ or \ character is required in
regexReplacement be sure to escape it with
a backslash, for example: "\$" or "\\".

Returns a new string, which is a substring
of the result string. The returned substring

substring(startIndex,endIndex)

includes the character at startIndex and
subsequent characters up to but not
including the character at endIndex.

Returns a new string, which is a substring
of the result string. The returned string

substring(startIndex)

includes the character at startIndex and
subsequent characters including the last
character in the string.

Returns a copy of the result string with
leading and trailing whitespace removed.

trim()

Binary methods in mapping expressions

In JUEL mapping expressions, you can use certain binary methods in the parts of the mapping
expressions that evaluate to binary data. The table below describes the binary methods you can
use.

DescriptionBinary method

Encodes a byte array to a Base64-encoded
string.

byteArrayToBase64(byteArray)

Decodes a Base64-encoded string to a byte
array.

base64ToByteArray(string)

Connecting Apama Applications to External Components 10.11.3 271

12 Using the Java Message Service (JMS)

DescriptionBinary method

Serializes the serializable Java object to a byte
array.

javaObjectToByteArray(object)

Deserializes the byte array to a serializable
Java object.

byteArrayToJavaObject(base64String)

Implementing a custom Java mapper
If themapping tools providedwith Apama do not meet your needs, then you can implement your
own Java class to map between Apama event strings and JMS message objects. A custommapper
can handle some event types and delegate handling of other event types to the mapping tools
provided with Apama or to other custom mapping tools. Typically, you will want to use the
SimpleAbstractJmsMessageMapper class, which is in the
com.apama.correlator.jms.config.api.mapper package. This topic provide a general description
of how to implement a custom mapper. See the Javadoc for details.

API overview

The SimpleAbstractJmsMessageMapper class is a helper class for implementing simple mappings
between JMS messages and Apama events. This class is the recommended way to implement a
stateless, bidirectional mapper, with trivial implementations of methods that most implementors
will not need to be concernedwith.Most implementationswill need to override only the following
methods:

The mapApamaToJmsMessage()method converts an Apama event string and (possibly null)
unique identifiers for elimination of duplicate messages to a JmsSenderMessageHolder object
that contains the message and message-sending parameters.
abstract JmsSenderMessageHolder mapApamaToJmsMessage(

JmsSenderMapperContext context, MappableApamaEvent event)

The mapJmsToApamaMessage()method converts a JMSmessage object to anApama event string.
It can also add the Apama unique message identifier (if it is available) into the Message object
for elimination of duplicate messages.
abstract MappableApamaEvent mapJmsToApamaMessage(

JmsReceiverMapperContext context, javax.jms.Message message)

Typically, the mapper class would contain com.apama.event.parser.EventType fields for each of
the Apama event types themapper can handle. Your custommappermethodswill use these fields
to parse and generate Apama events. Both methods use MappableApamaEvent, which wraps an
Apama event string plus optional duplicate detection information.

A JmsSenderMessageHolder object wraps a JMSmessage object in addition to JMS send parameters
such as the JMS destination.

The JmsReceiverMapperContext and JmsSenderMapperContext objects givemappers access to helper
methods for

272 Connecting Apama Applications to External Components 10.11.3

12 Using the Java Message Service (JMS)

Converting between strings and JMS destinations

Performing JNDI lookups if JNDI is configured

Obtaining other contextual information that may be needed during mapping such as the
receiverId or senderId

The SimpleAbstractJmsMessageMapper class also provides optional
senderMapperDelegate/receiverMapperDelegate bean properties that identify another mapper to
use for any messages that this mapper does not handle. The associated methods are used for the
XML configuration but should not be called by subclasses.

If your custommapper requires configuration properties to be specified in the XML configuration
file then define the properties as standard Java bean get/set public methods. Include any logic
required to validate parameter values in the overridden JmsSenderMessageHolder.init()method.

Formore complex needs, do not use the SimpleAbstractJmsMessageMapper class. Instead, implement
the factory interfaces directly to create separate classes for the sender and receiver mappers. This
is particularly important when the mapping operations are stateful. For example, if they rely on
a cache that should not be shared across all the mapper instances created by the factory to avoid
thread-safety concerns or costly and unnecessary synchronization. For the receiver side (sender
side is identical) there are two interfaces:

JmsReceiverMapperFactory is the interface thatmust be implemented by the Java bean, holding
any required configuration information. This classwill be referenced in the XML configuration
file. It provides get/set methods for configuration properties, an init()method to perform
any validation and a factory method to create JmsReceiverMapper instances.

JmsReceiverMapper is the interface that is responsible for actually mapping the objects. A new
instance will be created for each receiver and for each thread on which mapping occurs, so
this instance can hold any required caches or state without the need for costly
locking/synchronization. A destroy()method is provided in case there are resources that need
to be cleared or closed when the associated receiver is shut down is removed.

Configuring a custom mapper

To configure a JMS connection to use a custom mapper class, edit the connection's XML
configuration file as follows:

Add a bean definition for the sender and/or receiver mapper factory class, with any associated
configuration, and an id attribute that will be used to identify this mapper bean in the rest of
the configuration. Usually the simplest way to specify the classpath for the custom mapper's
classes is to put the mapper bean definition inside a new <jms:classpath> element.

Under the jms:connection element, set the receiverMapper and/or senderMapper properties to
point to this mapper, typically you use a ref="beanid" attribute to do this. If these properties
are not specified explicitly, the default is that the connection uses theApama-providedmapper,
assuming it is the only mapper defined in the configuration.

Following is an example of a configuration that specifies custom mappers:
<jms:classpath classpath="mycp">

<bean id="myCustomMapper" class="MyMapper">

Connecting Apama Applications to External Components 10.11.3 273

12 Using the Java Message Service (JMS)

<!-- if this uses SimpleAbstractJmsMessageMapper, optionally specify the
factory bean to delegate to for messages this mapper does not handle. -->
<property name="senderMapperDelegate" ref="standardMapper"/>
<property name="receiverMapperDelegate" ref="standardMapper"/>

<!-- mapper-specific configuration could go here -->
</bean>

</jms:classpath>
<jms:classpath classpath="...">

<jms:connection id="myConnection">
…
<property name="senderMapper" ref="myCustomMapper"/>
<property name="receiverMapper" ref="myCustomMapper"/>

Anymapper that subclasses SimpleAbstractJmsMessageMapper also supports the optional properties
senderMapperDelegate and receiverMapperDelegate These properties can be used to specify a
fallback mapper (factory bean) to delegate to for message types this mapper does not support.
Map methods must return null to indicate such types. For other errors, exceptions should always
be thrown.

Specifying transformation types

In theMapping Element Details section, in the Transformation Type field select the desired type
from the drop-down list.

To specify the transformation details

1. In the Mapping Definitions section, draw the line indicating the mapping from source to
target.

2. In the Mapping Definitions section, click on the line that specifies the mapping rule.

3. Under Mapping Element Details on the Properties tab, in the Transformation Type
drop-down list:

Select XSLT Transformation. In the Stylesheet URL field, click Browse to locate the
stylesheet file.

Select XPath. In the XPath Expression field, specify a valid XPath expression. You can
either enter the XPath expression directly or you can use the XPath builder tool to construct
an expression. To use the XPath Builder:

1. Click the Browse button [...] to the right of the XPath Expression field.

2. In the Select input for XPath helper dialog, click Browse [...] and select the name of
the file that contains a definition of the XML structure (the drop-down arrow allows
you to select the scope of the selection process). Click OK. The XPath Helper opens,
showing the XML structure of the selected file in the left pane. See also “Using the
XPath Helper” on page 252.

274 Connecting Apama Applications to External Components 10.11.3

12 Using the Java Message Service (JMS)

3. In the XPath Helper, build the desired XPath expression by double-clicking on nodes
of interest in the left pane. The resultant XPath expression appears in the XPath tab in
the upper right pane. If the XML document makes use of namespaces, change the
namespace option from Prefix to Namespace or Local name.

4. In the XPath Helper, click OK. The XPath Builder closes and the XPath Expression
field displays the XPath expression you built.

Select XMLDecode.

1. In the Node path field, specify a valid node path.

2. In theProperties field, specify the properties as property=value. If youwant to specify
multiple properties, specify the properties separated by a semicolon.

For more information, see “Specifying XML codec properties” on page 510.

Dynamic senders and receivers
In addition to specifying static senders and receivers in the adapter's configuration file as introduced
in “Getting started with simple correlator-integrated messaging for JMS” on page 236, you can
dynamically add and manage senders and receivers using actions on Apama's JMSConnection
event. (Note, for more information on static senders and receivers, see “Adding static senders and
receivers” on page 287.)

The unique identifiers specified when adding dynamic senders or receivers must not clash with
the identifiers used for any static senders and receivers in the configuration file. You cannot
dynamically remove a sender or receiver that was defined statically in the configuration file; only
dynamically added senders and receivers can be removed.

It is currently valid to send events to the channel associated with a newly created dynamic sender
as soon as the add action has returned. In this case, the correlator ensures that the events get sent
to the JMS broker eventually. However, best practice is to add a listener for JMSSenderStatus events
and wait for the OK status before beginning to send to a dynamic sender. It is valid to send events
to an existing sender's channel at any point until its removal is requested by calling the remove()
action. It is not valid to send any events to that channel after remove() has been called, and any
events sent after this point are in doubt and could be ignored without any error being logged.
Applications that make use of multiple contexts may need to coordinate across contexts to ensure
that no send or other operations are performed on senders that have been removed in another
context.

For more information on dynamically adding senders and receivers, see the JMSConnection event
documentation in the ApamaDoc documentation.

The example Apama application located in the APAMA_HOME\samples\correlator_jms\dynamic-
event-api directory demonstrates how to use the event API to dynamically add and remove JMS
senders and receivers. In addition, it shows how to monitor senders and receivers for errors and
availability.

Connecting Apama Applications to External Components 10.11.3 275

12 Using the Java Message Service (JMS)

Durable topics
JMS durable topic subscriptions are supported for both static and dynamic receivers. This lets
Apama applications persistently register interest in a topic's messages with the JMS broker. If the
correlator is down thenmessages sent to the topicwill be held ready for deliverywhen the correlator
recovers.

Statically configured durable topic subscriptions cannot be removed. When a dynamic receiver
using a durable topic subscription is removed, the JMS subscription to the topic will be removed
at the same time, before the REMOVED receiver status notification event is sent. A consequence of
this is that the removal of a receiver will not be completed until the JMS connection is up, in order
that the subscription can be removed from the JMS broker. Note that durable topic subscriptions
cannot be created using BEST_EFFORT receivers.

The preferred method of subscribing to a durable topic is to use the
addReceiverWithDurableTopicSubscription (or addReceiverWithConfiguration) action on the
com.apama.correlator.jms.JMSConnection event. For more information on these actions, see the
JMSConnection event documentation in the ApamaDoc documentation.

Receiver flow control
It is possible to give an EPL application control over the rate at which events are taken from the
JMS queue or topic by each JMS receiver. To enable this option, set the receiverFlowControl
property to true in the JmsReceiverSettings bean. The configuration for this bean is found in the
jms-global-spring.xml file. To display the file in Software AG Designer, select the Advanced tab
in the adapter configuration editor.

Once receiverFlowControl has been enabled, use the
com.apama.correlator.jms.JMSReceiverFlowControlMarker event to enable receiving events from
each receiver, by specifying a non-zero window size. For example, to ensure that each receiver
will never addmore than 5000 events to the input queue of each public context, add the following
EPL code:
using com.apama.correlator.jms.JMSReceiverFlowControlMarker;
...
on all JMSReceiverFlowControlMarker() as flowControlMarker
{

flowControlMarker.updateFlowControlWindow(5000);
}

A flow control marker is an opaque event object that is always sent to the correlator's public
contexts when a new receiver is first added and during recovery of a persistent correlator. The
message is also sent regularly as newmessages are received andmapped,which typically happens
at the end of each received batch, for example, at least once every 1000 successfully-mapped events
if the default setting for maxBatchSize is used. The marker event indicates a specific point in the
sequence of events sent from each receiver, and the application must always respond by calling
the updateFlowControlWindow action on this marker event. This sets the size of the window of new
events the receiver is allowed to take from the JMS queue or topic, relative to the point indicated
by the marker.

276 Connecting Apama Applications to External Components 10.11.3

12 Using the Java Message Service (JMS)

More advanced applications that need to block JMS receivers until asynchronous application-specific
operations arising from the processing of receivedmessages (such as databasewrites andmessaging
sending) have completed can factor the number of pending operations into the flow control
window. To reliably do this, it is necessary to stash the marker events for each receiver in a
dictionary and add logic to call updateFlowControlWindowwhen the number of pending operations
falls, so that any receivers that were blocked due to those operations can resume receiving. It is
the application's responsibility to ensure that receivers do not remain permanently blocked, by
calling updateFlowControlWindow sufficiently often. For an example of how receiver flow control
can be used together with asynchronous per-event operations, see the flow-control sample
application in APAMA_HOME\samples\correlator_jms.

Applications must make sure that they listen for all JMSReceiverFlowControlMarker events, and
that their listener for the flow control markers is set up before JMS.onApplicationInitialized is
called. Any stale or invalid JMSReceiverFlowControlMarker event, for example, from before a
persistent correlator was restarted, cannot be used to update the flow control window, and any
calls on such stale events will simply be ignored.

Documentation in ApamaDoc format is available for the
com.apama.correlator.jms.JMSReceiverFlowControlMarker event along with documentation for
the rest of theAPI for correlator-integratedmessaging for JMS. SeeAPIReference for EPL (ApamaDoc).

The current window size for all receivers is indicated by the rWindow item in the "JMS Status" lines
that are periodically logged by the correlator, and this may be a useful debugging aid if receivers
appear to be blocked indefinitely.

Monitoring correlator-integrated messaging for JMS
status
Apama applications often need to monitor the status of JMS connections, senders, and receivers
when the application needs to wait for a receiver or sender to be available (status "OK") before
using it, and, conversely, to detect and report error conditions.

The main way to monitor status is to simply set up EPL listeners for the JMSConnectionStatus,
JMSReceiverStatus, and JMSSenderStatus events which are sent to all public correlator contexts
automatically, both on startup and whenever the status of these items changes. Note that there is
no need to 'subscribe' to receive these events — provided JMS.onApplicationInitialized()was
called, these events will be sent automatically, so all that is required is to set up listeners.

Occasionally, it may be useful to monitor status using the standardized event API defined by
StatusSupport.mon. The CorrelatorJMSStatusManagermonitor, which is part of the
correlator-integrated messaging for JMS bundle, acts as a bridge between the JMS-specific status
events and this API, to allowApama applications tomonitor the status of JMS connections, senders
and receivers using the standard Status Support interface.

To use this interface

1. Send a com.apama.statusreport.SubscribeStatus event, which is defined as:

event SubscribeStatus {

Connecting Apama Applications to External Components 10.11.3 277

12 Using the Java Message Service (JMS)

string serviceID;
string object;
string subServiceID;
string connection;

}

The fields for the SubscribeStatus event are:

serviceID - This should be set to CORRELATOR_JMS.

object - Can be CONNECTION, RECEIVER, or SENDER, or "" (empty string). If "" is specified, the
application will subscribe to status events for all connections, receivers, and senders.

subServiceID - The name of a specific receiver or sender if RECEIVER or SENDER is specified
in the object field. If the object field specifies RECEIVER or SENDER, the subServiceID field
must have a valid, non-empty value. If the object field specifies CONNECTION this fieldmust
be "".

connection - The name of a specific connection. If the object field specifies a value, the
connection field must have a valid, non-empty value.

2. Create listeners for com.apama.statusreport.Status events (and optionally for StatusError
events which are sent if the status subscription failed due to an invalid identifier being
specified).

3. To unsubscribe, send an UnsubscribeStatus eventwith field values thatmatch the corresponding
SubscribeStatus event.

Formore information onmonitoring correlator-integratedmessaging for JMS connections, receivers,
and senders, see the descriptions of the JMSConnectionStatus, JMSReceiverStatus, and
JMSSenderStatus events in the ApamaDoc documentation.

Logging correlator-integrated messaging for JMS
status
The correlator writes status information to its log file every five seconds or at an interval that you
setwith the --logQueueSizePeriod option. In addition to the standard correlator status information
described in "Descriptions of correlator status log fields" (in Deploying and Managing Apama
Applications, correlators that are configured for integrated messaging log JMS status information.
This information is logged in the following form:
INFO [20032] - Correlator Status: sm=2 nctx=1 ls=4 rq=0 eq=0 iq=0 oq=0 rx=8

tx=6 rt=0 nc=1 vm=251384 pm=956240 runq=0
INFO [20032:Status] - JMS Status: s=1 tx=6 sRate=1,200 sOutst=9,005 r=2

rx=4 rRate=1,180 rWindow=-1 rRedel=3 rMaxDeliverySecs=2.1
rDupsDet=2 rDupIds=2,005,023 connErr=2 jvmMB=49

Status information logged by correlators that are configured for integratedmessaging is described
in the following sections.

The following table describes the correlator log fields related to JMS:

278 Connecting Apama Applications to External Components 10.11.3

12 Using the Java Message Service (JMS)

DescriptionFull nameField

The current number of JMS senders (both
static and dynamic) on all JMS connections.

Number of senderss

The total number of events sent to all JMS
sender channels and which have been fully

Sent eventstx

processed (either sent to JMS or exhausted
the maximum failure retry limit). Includes
events sent to dynamic senders that have
since been removed, but does not include
events sent before the correlator was
restarted.

The total number of events sent per second
across all senders, calculated over the

Send throughput ratesRate

interval since the last status line (typically 5
seconds).

The total number of events that have been
sent by EPL but are still queued waiting to
be sent to JMS.

Outstanding sent eventssOutst

The current number of JMS receivers (both
static and dynamic) on all JMS connections.

Number of receiversr

The total number ofmessages received from
JMS, including messages received but not

Received messagesrx

yet mapped to Apama events and added to
the input queue of each public context.
Includes events received by dynamic
receivers that have now been removed, but
does not include events received before the
correlator was restarted, nor does it include
any JMSReceiverFlowControlMarker events
enqueued when the receiverFlowControl is
enabled.

The total number of JMS messages received
per second across all receivers, calculated

Received throughput
rate

rRate

over the interval since the last status line
(typically 5 seconds).

If receiverFlowControl is disabled for all
receivers, this has the special value "-1". If

Receiver flow control
window size

rWindow

any receivers have flow control enabled,
rWindow gives a measure of the number of
events that can be received before all flow
controlled receivers will block, calculated as
the sum of all the non-negative receiver

Connecting Apama Applications to External Components 10.11.3 279

12 Using the Java Message Service (JMS)

DescriptionFull nameField

window sizes. Note that even if this value is
greater than 0 there could still be one or
more receivers which have exhausted their
own windows and are blocked, so consider
enabled logDetailedStatus if per-receiver
flow control diagnostics are required.

The total number of JMS messages received
with the JMSRedelivered flag set to true,

Redelivered messagesrRedel

indicating they are in-doubt and may have
already been delivered in the past. Formany
JMS providers this flag is not always set
reliably/consistently, but it does at least
provide an indication ofwhether redeliveries
may be taking place.

The highest time taken by the JMS broker to
deliver a message, based on the difference

Maximum delivery timerMaxDeliverySecs

between the time when each message is
received and the value of the JMSTimestamp
message header field which indicates the
time when it was sent. This is likely to be a
low number during normal operation, but
will rise during failure modes such as loss
of network connectivity or machine crashes
as the JMS broker attempts to redeliver
messages.

This value is useful for understanding the
redelivery behavior of the JMS provider in
use and for choosing a sensible time expiry
window if EXACTLY_ONCEduplicate detection
is being used (see
dupDetectionExpiryTimeSecs property). A
high rMaxDeliverySecs value during testing
may indicate that messages remaining on a
JMS queue or durable topic from a previous
test run may be interfering with the current
test run. Note that any difference in the
system time on the sending and receiving
hosts will add an error to this value, which
can result in negative values.

The total number of duplicate messages
detected by EXACTLY_ONCE receivers and

Duplicate messages
detected

rDupsDet

suppressed because their uniqueMessageId
was already present in the duplicate

280 Connecting Apama Applications to External Components 10.11.3

12 Using the Java Message Service (JMS)

DescriptionFull nameField

detector. Does not include dynamic receivers
that have now been removed.

The total number of uniqueMessageIds being
kept in memory for duplicate detection

Duplicate ids inmemoryrDupIds

purposes by EXACTLY_ONCE reliable receivers.
This is the total of the size of all
per-message-source fixed-size expiry queues
plus the unbounded time-based expiry
queue. If this becomes too large it is possible
the correlator could run out of memory.

The total number of times a valid JMS
connection has gone down. Note that this

Connection errorsconnErr

tracks errors in existing connections anddoes
not include repeated failures to establish a
connection.

The amount of memory used by the JVM in
Megabytes (heap plus non-heap), which can

JVM used memoryjvmMB

be compared with the maximum memory
size provided for the JVM to check how
much sparememory there is and ensure that
the correlator is not close to running out of
memory. This is particularly useful for
checking peak memory consumption, such
as testing when any EXACTLY_ONCE duplicate
detectors are fully populated with the
maximum likely number of
uniqueMessageIds and any JMonapplications
are running in the same correlator are also
near the maximum memory they are likely
to use. Note that the memory usage figure
reported by the JVM includes both live
objects and objects waiting to be garbage
collected, so inevitably this will go up and
down a certain amount as garbage
collections occur.

The suffix <waiting for
onApplicationInitialized>will be added

onApplication
Initializedindicator

...

to the status lines if the EPL application has
not yet called
jms.onApplicationInitialized() as a
reminder that status or JMS message events
cannot be passed into the correlator until this
action is invoked.

Connecting Apama Applications to External Components 10.11.3 281

12 Using the Java Message Service (JMS)

Detailed JMS status lines

If the logDetailedStatus property in an Apama application that uses correlator-integrated
messaging for JMS is set to true in the JmsSenderSettings or JmsReceiverSettings configuration
object, then additional lines will also be logged for each sender and receiver and their parent
connections, for example.
INFO [19276] - Correlator Status: sm=2 nctx=1 ls=4 rq=0 eq=0 iq=0 oq=0

rx=8 tx=6 rt=0 nc=1 vm=252372 pm=956240 runq=0
INFO [19276:Status] - JMS Status: s=1 tx=6 sRate=0 sOutst=0 r=2 rx=4

rRate=0 rWindow=1500 rRedel=0
rMaxDeliverySecs=0.0 rDupsDet=1 rDupIds=3
connErr=0 jvmMB=67

INFO [19276:Status] - JMSConnection myConnection: s=1 r=2 connErr=0
sessionsCreated=3

INFO [19276:Status] - JMSSender myConnection-default-sender: tx=6
sRate=0 sOutst=0 msgErrors=2

INFO [19276:Status] - JMSReceiver myConnection-receiver-SampleQ2:
rx=4 rRate=0 rWindow=1500 rRedel=0
rMaxDeliverySecs=0.0 msgErrors=1 rDupsDet=1
perSourceDupIds=3 timeExpiryDupIds=0 maxMsgKB=1,650.9

INFO [19276:Status] - JMSReceiver myConnection-receiver-SampleT2:
rx=0 rRate=0 rWindow=-1 rRedel=0
rMaxDeliverySecs=0.0 msgErrors=0 rDupsDet=0
perSourceDupIds=0 timeExpiryDupIds=0 maxMsgKB=1,245.7

INFO [19276:Status] - JMSReceiver myConnection-receiver-apama-queue-01:
rx=5 rRate=0 rWindow=96 rRedel=0
rMaxDeliverySecs=0.0 msgErrors=1 rDupsDet=1
perSourceDupIds=4 timeExpiryDupIds=0 maxMsgKB=1,000.2

The JMS connector-specific status lines contain:

DescriptionFull nameField

The current number of JMS senders (both
static and dynamic) on all JMS connections.

Number of senderss

The current number of JMS receivers (both
static and dynamic) on all JMS connections

Number of receiversr

The total number of times this JMS
connection has gone down, Note that this

Connection errorsconnErr

tracks errors in existing connections and
does not include repeated failures to
establish a connection.

The total number of JMS sessions that have
been created during the lifetime of this JMS

Send/receive sessions
created

sessionsCreated

connection. In normal operation a single
session is created for each sender or receiver,
but if a connection failure or serious
sender/receiver error occurs, a new session
will be created, causing this counter to be
incremented. Note, this counter is not

282 Connecting Apama Applications to External Components 10.11.3

12 Using the Java Message Service (JMS)

DescriptionFull nameField

decremented when the previous session is
closed.

The JMS sender-specific status lines contain:

DescriptionFull nameField

The number of events that were sent to this
sender's channel and have been fully

Sent eventstx

processed (either sent to JMS, or exhausted
the maximum failure retry limit).

The number of events sent per second to this
sender, calculated over the interval since the
last status line (typically 5 seconds).

Send throughput ratesRate

The number of events that have been sent
by EPL but are still queued waiting to be
passed to JMS by this sender.

Outstanding sent eventssOutst

The number ofApama events that could not
be sent to JMS due to some error, typically

Per-message error countsMsgErrors

a mapping failure or destination not found
error. See the log file for WARN and ERROR
messages that will provide more details.

The JMS receiver-specific status lines contain:

DescriptionFull nameField

The number ofmessages received from JMS,
including messages received but not yet

Received messagesrx

mapped to Apama events and added to the
input queue of each public context.

The number of JMS messages received per
second by this receiver, calculated over the

Receive throughput raterRate

interval since the last status line (typically 5
seconds).

If receiverFlowControl is disabled this has
the special value "-1". If it is enabled, this

Flow control window
size

rWindow

gives the current flow control window size,
that is the number of successfully mapped
events that can still be received before the
receiver will block. A zero value indicates
that the flow control window has been
exhausted and the application should call

Connecting Apama Applications to External Components 10.11.3 283

12 Using the Java Message Service (JMS)

DescriptionFull nameField

JMSReceiverFlowControlMarker.
updateFlowControlWindow() to unblock the
receiver. A negative value indicates that the
window has been updated to a negative
value, which has the same effect as a
window of 0.

The number of JMSmessages received with
the JMSRedelivered flag set to true.

Redelivered messagesrRedel

The highest time taken by the JMS broker to
deliver a message to this receiver, based on

Maximumdelivery timerMaxDeliverySecs

the difference between the time when each
message is received and the value of the
JMSTimestampmessage header field which
indicates the time when it was sent.

The number of received JMS messages that
could not be passed to the Apama

Per-message error countrMsgErrors

application due to some error, typically a
mapping failure. See the log file for WARN and
ERRORmessages that will provide more
details.

The number of duplicatemessages detected
by this EXACTLY_ONCE receiver and

Duplicate messages
detected

rDupsDet

suppressed because their uniqueMessageId
was already present in this receiver's
duplicate detector. Only displayed for
EXACTLY_ONCE receivers.

The total number of uniqueMessageIds being
kept in memory for duplicate detection

Per-source duplicate ids
in memory

perSourceDupIds

purposes by all per-message-source
fixed-size expiry queues. Only displayed for
EXACTLY_ONCE receivers.

The total number of uniqueMessageIds being
kept in memory for duplicate detection

Time-based duplicate
ids in memory

timeExpiryDupIds

purposes by the unbounded time-based
expiry uniqueMessageId queue.

The maximum size in kilobytes of JMS
messages that have been received so far.

Maximummessage size
received so far

maxMsgKB

284 Connecting Apama Applications to External Components 10.11.3

12 Using the Java Message Service (JMS)

JMS configuration reference
This section includes topics relating to the configuration for applications using Apama's
correlator-integrated messaging for JMS. It covers configuration files, configuration objects, and
the configuration properties that can be set when developing your applications.

Configuration files for JMS
The correlator-integrated messaging for JMS configuration consists of a set of XML files and
.properties files.

A correlator that supports JMS has the following two files:

jms-global-spring.xml

jms-mapping-spring.xml

In addition, for each JMS connection added to the configuration, there will be an additional XML
and .properties file :

connectionId-spring.xml

connectionId-spring.properties

When the correlator is started with the --jmsConfig configDir option (see also "Starting the
correlator" in Deploying and Managing Apama Applications), it will load all XML files matching *-
spring.xml in the specified configuration directory, and also all *.properties files in the same
directory. (Note, the correlator will not start unless the specified directory contains at least one
configuration file.)

Note:
When the correlator is started, any properties that are specified with the --config file or
-Dkey=value option take precedence and override the properties defined in a connectionId-
spring.properties file. An INFOmessage is then logged for all Spring properties that are being
ignored.

Global configuration that is shared across all a correlator's connections is stored in jms-global-
spring.xml, the rules for mapping between JMS messages and Apama events are stored in jms-
mapping-spring.xml, and the connectionId-spring.xml files contain the configuration for each
JMS broker connection added to the configuration. Each XML file can contain ${...} property
placeholders, whose values come from the *.properties files. This provides a way for the
configuration to be defined once in the XML files, then customized for development, UAT, and
different deployment scenarios by creating separate copies of the .properties files.

When using Apama in Software AG Designer, all these files are generated automatically. A new
connectionId-spring.xml and connectionId-spring.properties file is created when the JMS
ConfigurationWizard is used to add a JMS connection, and the most commonly used settings can
be changed at any time using the correlator-integratedmessaging for JMS instance editor window
(which rewrites the .propertiesfilewhenever the configuration is changed). SoftwareAGDesigner
makes it easy to set and edit basic configuration options with the adapter editor. In addition, the

Connecting Apama Applications to External Components 10.11.3 285

12 Using the Java Message Service (JMS)

jms-global-spring.xml and connectionId-spring.xml files can be edited manually in Software
AGDesigner to customizemore advanced configuration aspects such as advanced sender/receiver
settings, logging of messages, etc. To edit the XML, open the correlator-integrated messaging for
JMS editor and click on theAdvanced tab; the various configuration files can be accessed through
the hyperlinks on this tab. Once the editor for an XMLfile has been opened, you can switch between
the Design and Source views using the tabs at the bottom of the editor window.

Note that unlike the other XMLfiles, Apama does not supportmanual editing of the jms-mapping-
spring.xml file in this release, and the format of that file may change at any time without notice.
We recommend using Software AG Designer for all mapping configuration tasks.

XML configuration file format
The correlator-integrated messaging for JMS configuration files use the Spring XML file format,
which provides an open-source framework for flexibly wiring together the difference parts of an
application, each of which is represented by a bean. Each bean is configured with an associated
set of properties, and has a unique identifier which can be specified using the id= attribute.

For example:
<bean id="globalReceiverSettings"

class="com.apama.correlator.jms.config.JmsReceiverSettings">
<property name="logJmsMessages" value="true"/>
<property name="logProductMessages" value="false"/>

</bean>

Or:
<jms:receiver id="myReceiver1">

<property name="destination" value="queue:SampleQ1"/>
</jms:receiver>

It is not necessary to have a detailed knowledge of Spring to configure correlator-integrated
messaging for JMS, but some customers may wish to explore the Spring 3.0.5 documentation to
obtain a deeper understanding of what is going on and to leverage some of the more advanced
functionality that Spring provides.

The key beans making up the Apama configuration are jms:connection, jms:receiver and
jms:sender, plus additional beans that are usually stored in the jms-global-spring.xml file and
shared across all configured connections, such as the reliable receive database and the advanced
sender/receiver settings beans.

Bean ids

All receiver, sender, connection, and other configuration beans have an "id=" attribute that specifies
a unique identifier. These identifiers are used in log messages, when monitoring status from EPL
applications, and, when necessary, for references between different Spring beans in the XML
configuration files. It is important that all identifiers are completely unique, for example the same
ID cannot be used for senders and receivers in different connections, or for both a sender and a
receiver, even if they located in different XML files.

286 Connecting Apama Applications to External Components 10.11.3

12 Using the Java Message Service (JMS)

http://static.springsource.org/spring/docs/3.0.5.RELEASE/spring-framework-reference/htmlsingle/spring-framework-reference.html

Setting property values

Most bean properties have primitive values (such as string, number, boolean) which are set like
this:
<property name="propName" value="my value"/>

However, there are also a few properties that reference other beans, such as the
reliableReceiveDatabase property on jms:connection and the receiverSettings property on
jms:receiver. These property values can be set by specifying the ID of a top-level bean like this
(where it is assumed that globalReceiverSettings is the ID of a JmsReceiverSettings bean):
<property name="receiverSettings" ref="globalReceiverSettings"/>

Any top-level bean may be referenced in this way, that is, any bean that is a child of the <beans>
element and not nested inside another bean. Referencing a bean that is defined in a different
configuration file is supported, and the jms-global-spring.xml file is intended as a convenient
place to store top-level beans that should be shared across many different JMS connections.

Instead of referencing a shared bean, it is also possible to configure a bean property by creating
an “inner” configuration bean nested inside the property value like this:
<property name="receiverSettings">

<bean class="com.apama.correlator.jms.config.JmsReceiverSettings">
<property name="logJmsMessages" value="true"/>

</bean>
</property>

(Note, advanced users may want to exploit Spring's property inheritance by using the parent=
attribute on an inner bean to inheritmost properties froma standard top-level beanwhile overriding
some specific subset of properties or by type-based “auto-wiring” - any non-primitive property
of jms:connection/receiver/sender for which no value is explicitly set will implicitly reference a
top-level bean of the required type. This is how jms:connection beans get a reference to the
reliableReceiveDatabase and defaultSender/ReceiverSettings beans. Most configuration can
just ignore this detail and use the automatically wired property values, and the bean representing
the Apama-provided mapper, but if desired the defaults for individual
connections/senders/receivers can be customized independently of each other by specifying the
property values explicitly.)

Adding static senders and receivers

For simple caseswhere detailed configuration of receivers is not required, it is possible to configure
static receivers using a simple semicolon-delimited list of JMS destinations, for example:
<property name="staticReceiverList"

value="topic:MyTopic;jndi:/sample/some-jndiqueuename" />

The staticReceiverList bean property is represented by a placeholder in the connectionId-
spring.properties file, and can be edited using Software AG Designer.

For more advanced receiver configuration, it is necessary to edit the connectionId-spring.xml file
manually, and provide a list of jms:receiver beans as the value of the staticReceivers property:

Connecting Apama Applications to External Components 10.11.3 287

12 Using the Java Message Service (JMS)

<property name="staticReceivers">
<list>

<jms:receiver id="myReceiver1">
<property name="destination"

value="queue:SampleQ1"/>
</jms:receiver>

<jms:receiver id="myReceiver2">
<property name="destination"

value="jndi:/sample/my-jndi-topic-name"/>
<property name="durableTopicSubscriptionName"

value="MyTopicSubscription"/>
</jms:receiver>

</list>
</property>>

Senders may be configured in the same way, for example:
<property name="staticSenders">

<!-- each static sender results in a correlator channel
called "jms:senderId" -->

<list>
<jms:sender id="MyConnection-default-sender">
</jms:sender>

<jms:sender id="myReliableSender">
<property name="senderReliability" value="EXACTLY_ONCE"/>

</jms:sender>

<jms:sender id="myUnreliableSender">
<property name="senderReliability" value="BEST_EFFORT"/>

</jms:sender>
</list>

</property>

If a sender list is not explicitly configured, a single sender with ID connectionId-default-sender
will be created.

XML configuration bean reference
This topic lists the various configuration objects (beans) and the supported properties for each
bean.

See also “Using custom EL mapping extensions” on page 264.

jms:connection

This bean defines the information needed to establish a JMS Connection to a single JMS broker
instance. Its required properties are: connectionFactory or connectionFactory.jndiName, and (if
JNDI is used to locate the connection factory), jndiContext.

Example:
<jms:connection id="MyConnection">

<property name="staticReceiverList"
value="${staticReceiverList.MyConnection}" />

288 Connecting Apama Applications to External Components 10.11.3

12 Using the Java Message Service (JMS)

<property name="defaultReceiverReliability"
value="${defaultReceiverReliability.MyConnection}"/>

<property name="defaultSenderReliability"
value="${defaultSenderReliability.MyConnection}"/>

<property name="connectionFactory.jndiName"
value="${connectionFactory.jndiName.MyConnection}" />

<property name="jndiContext.environment">
<value>

${jndiContext.environment.MyConnection}
</value>

</property>
<property name="connectionAuthentication.username"

value="${connectionAuthentication.username.MyConnection}" />
<property name="connectionAuthentication.password"

value="${connectionAuthentication.password.MyConnection}" />
</jms:connection>

Supported properties:

connectionFactory.jndiName - the JNDI lookup name for the ConnectionFactory object that
should be used for this jms:connection.

connectionFactory - a JMSprovider bean that implements the JMS ConnectionFactory interface,
if the ConnectionFactory is to be instantiated directory by the Spring framework (rather than
using JNDI to lookup the ConnectionFactory). The bean value that is provided will usually
required properties and/or constructor arguments to be specified in order to fully initialize it.

connectionAuthentication.username - the name of the user/principal to be used for the JMS
connection (note that this is often different from the username/password needed to login to
the JNDI server, which is part of the JNDI environment configuration). Default value is "".

connectionAuthentication.password - the password/credentials to be used for the JMS
connection.

jndiContext.environment - the set of properties that specify the environment for initializing
access to the JNDI store. Typically includes some standard JNDI keys such as
java.naming.factory.initial, java.naming.provider.url, java.naming.security.principal
and java.naming.security.credentials, and maybe also some provider-specific keys. The
usual way to specify a properties map value is key=value entries delimited by newlines and
surrounded by the <value> element, for example, <property
name="jndiContext.environment"><value>...</value><</property>.

clientId - the JMS client IDwhich uniquely identifies each connected JMS client to the broker.
Default value is "" although some JMS providers may require this to be set, especially when
using durable topics.

defaultReceiverReliability - the Apama reliability mode to use for all this connection's
receivers unless overridden on a per-receiver basis; valid values are BEST_EFFORT, AT_LEAST_ONCE,
EXACTLY_ONCE, APP_CONTROLLED. Default value is BEST_EFFORT.

defaultSenderReliability - theApama reliabilitymode to use for all this connection's senders
unless overridden on a per-sender basis; valid values are BEST_EFFORT, AT_LEAST_ONCE,
EXACTLY_ONCE. Default value is BEST_EFFORT.

Connecting Apama Applications to External Components 10.11.3 289

12 Using the Java Message Service (JMS)

staticReceiverList - a list of destinations to receive from, delimited by semi-colons. Each
destination must begin with "queue:", "topic:" or "jndi:". This property provides a simple
way to add static receivers when the more advanced configuration options provided by the
staticReceivers property are not needed. staticReceiverList receivers are always added in
addition to any receivers specified by staticReceivers. The staticReceiverList property
cannot contain duplicate destination entries (see the staticReceivers property if this is
required). Default value is "".

staticReceivers - a list of jms:receiver beans specifying JMS receivers to create for this
connection. The jms:receiver elements arewrapped in a <list> element, for example, <property
name="staticReceivers"><list>...</list></property>. Default value is an empty list.

staticSenders - a list of sender beans specifying JMS senders to create for this connection. The
jms:sender elements are wrapped in a <list> element, for example, <property
name="staticSenders"><list>...</list></property>. Default value is a single sender called
"default".

defaultReceiverSettings (advanced users only) - a reference to a JmsReceiverSettings bean,
which provides access to advanced settings that are usually shared across all configured
receivers for this connection. Default value is a reference to the JmsReceiverSettings bean
instance defined in the jms-global-spring.xml file (this uses Spring's byType auto-wiring; if
multiple top-level JmsReceiverSettings beans exist in the configuration then the reference
must be specified explicitly in each jms:connection).

defaultSenderSettings (advanced users only) - a reference to a JmsSenderSettings bean,which
provides access to advanced settings that are usually shared across all configured senders for
this connection. Default value is a reference to the JmsSenderSettings bean instance defined
in the jms-global-spring.xml file (this uses Spring's byType auto-wiring; if multiple top-level
JmsSenderSettings beans exist in the configuration then the referencemust be specified explicitly
in each jms:connection).

reliableReceiveDatabase (advanced users only) - a reference to a ReliableReceiveDatabase
bean,which is required for implementing the AT_LEAST_ONCE or EXACTLY_ONCE reliabilitymodes
for any receivers added to this jms:connection. Default value is a reference to the single
DefaultReliableReceiveDatabase bean instance defined in the jms-global-spring.xml file (this
uses Spring's byType auto-wiring; ifmultiple top-level DefaultReliableReceiveDatabase beans
exist in the configuration then the referencemust be specified explicitly in each jms:connection).
The only reason for changing this property would be to use separate databases or different
JMS connections which could in some advanced cases provide a performance advanced,
depending on the application architecture and the configuration of the jms:connection and
disk hardware.

connectionRetryIntervalMillis - Specifies how long to wait between attempts to establish
the JMS connection. Default value is 1000 ms.

receiverMapper - points to a custommapper. Typically you use a ref="beanid" attribute to do
this. If this property is not specified, the default is that the connection uses theApama-provided
mapper, assuming it is the only mapper defined in the configuration.

senderMapper - points to a custom mapper. Typically you use a ref="beanid" attribute to do
this. If this property is not specified, the default is that the connection uses theApama-provided
mapper, assuming it is the only mapper defined in the configuration.

290 Connecting Apama Applications to External Components 10.11.3

12 Using the Java Message Service (JMS)

jms:receiver

This bean defines a single-threaded context for receiving events from a single JMS destination. Its
only required property is "destination".

Example:
<jms:receiver id="myReceiver">

<property name="destination" value="topic:SampleT1"/>
</jms:receiver>

Supported properties:

destination - the JMS queue or topic to receive from. Must begin with the prefix "queue:",
"topic:" or "jndi:". A JMS queue or topic name can be specified with the "queue:" or "topic:"
prefixes, or if the queue or topic should be looked up using a JNDI name then the "jndi:"
prefix should be used instead.

receiverReliability - the Apama reliability mode to use when JMS messages are received;
valid values are BEST_EFFORT, AT_LEAST_ONCE, EXACTLY_ONCE, APP_CONTROLLED. Default value is
provided by the parent jms:connection's defaultReceiverReliability setting.

durableTopicSubscriptionName - if specified, a durable topic subscriberwill be created (instead
of a queue/topic consumer), and registeredwith the specified subscription name. Default value
is "", which means do not create a durable topic subscription. Note that some providers will
require the connection's clientId property to be specified when using durable topics.

messageSelector - a JMSmessage selector string that will be used by the JMS provider to filter
the messages pulled from the queue or topic by this receiver, based on the header and/or
property values of themessages. Default value is "" whichmeans that no selector is in operation
and all messages will be received. Message selectors can be used to partition the messages
received bymultiple receivers on the same queue or durable topic. The JMSAPI documentation
describes the syntax of message selectors in detail; a simple example selector is "JMSType =
'car' AND color = 'blue' AND weight > 2500".

noLocal - an advanced JMS consumer parameter that prevents a connection's receivers from
seeing messages that were sent on the same (local) JMS connection. Default value is false.

dupDetectionDomainId - an advanced Apama setting for overriding the way receivers are
grouped together for duplicate detection purposes when using EXACTLY_ONCE receive mode.
Set this to the same string value for a set of receivers to request detection of duplicate
uniqueMessageIds across all the messages from those receivers. Default value is
"<connectionId>:<destination>" (that is, look for duplicates across all receivers for the same
queue/topic only within the same jms:connection).

receiverSettings - a reference to a JmsReceiverSettings bean, which provides access to
advanced settings that are usually shared across all configured receivers. Default value is
provided by the parent connection's defaultReceiverSettings property (which is usually a
reference to the JmsReceiverSettings bean instance defined in the jms-global-spring.xml file).

Connecting Apama Applications to External Components 10.11.3 291

12 Using the Java Message Service (JMS)

jms:sender

This bean defines a single-threaded context for sending events to a JMS destination, and results
in the creation of a correlator output channel called jms:senderId. It has no required properties.

Example:
<jms:sender id="mySender">

<property name="senderReliability" value="BEST_EFFORT"/>
<property name="messageDeliveryMode" value="PERSISTENT"/>
<property name="senderSettings" ref="globalSenderSettings"/>

</jms:sender>

Supported properties:

senderReliability - the Apama reliability mode to use when events are sent to JMS. Valid
values are BEST_EFFORT, AT_LEAST_ONCE, EXACTLY_ONCE. Default value is provided by the parent
jms:connection's defaultSenderReliability setting.

messageDeliveryMode - this property applies to a sender that is using the BEST_EFFORT reliability
mode to deliver messages to a JMS broker. The default is the JMS NON_PERSISTENT delivery
mode. You can change the value of this property to PERSISTENTmode.While PERSISTENTmode
is slower, it causes the JMS broker to write messages to disk to protect against crashes of the
JMS broker node. The only possible values for the messageDeliveryModeproperty are PERSISTENT
and NON_PERSISTENT. This property is ignored for other reliable senders.

senderSettings - a reference to a JmsSenderSettings bean, which provides access to advanced
settings that are usually shared across all configured senders. Default value is provided by
the parent connection's defaultSenderSettings property (which is usually a reference to the
JmsSenderSettings bean instance defined in the jms-global-spring.xml file).

ReliableReceiveDatabase

This bean defines a database used by Apama to implement reliable receiving. It has no required
properties. Typically all connections in a correlator will share the same receive database; if the
correlator is not started with the -P (persistence enabled) flag, this bean will be ignored.

Example:
<bean id="myReliableReceiveDatabase"

class="com.apama.correlator.jms.config.DefaultReliableReceiveDatabase">
<property name="storePath" value="jms/my-receive.db"/>
<!-- either absolute path, or path relative to correlator store location -->

</bean>

Supported property:

storePath - the path where the message store database should be created. Default value is
jms-receive-persistence.db. Use an absolute path, or a path relative to the store location
specified for use by the correlator state persistence store on the correlator command line.

To protect the security of personal data, see "Protecting Personal Data in Apama Applications" in
Developing Apama Applications.

292 Connecting Apama Applications to External Components 10.11.3

12 Using the Java Message Service (JMS)

JmsSenderSettings

This bean defines advanced settings for message senders. It has no required properties. Typically
all senders in all connections will share the same JmsSenderSettings bean, but it is also possible
to use different settings for individual senders.

Example:
<bean id="globalSenderSettings"

class="com.apama.correlator.jms.config.JmsSenderSettings">
<property name="logJmsMessages" value="false"/>
<property name="logJmsMessageBodies" value="false"/>
<property name="logProductMessages" value="false"/>

</bean>

Supported properties:

logJmsMessages - if true, log information about all JMS messages that are sent (but not the
entire body) at INFO level. Default value is false.

logJmsMessageBodies - if true, log information about all JMSmessages that are sent, including
the entire message body at INFO level. Default value is false.

logProductMessages - if true, log information about all Apama events that are sent at INFO
level. Default value is false.

logDetailedStatus - Enables logging of a dedicated INFO status line for each sender and a
summary line for each parent connection. The default value is false (detailed logging is
disabled), which results in a single summary line covering all senders and connections.

logPerformanceBreakdown - Enables periodic logging of a detailed breakdown of how much
time is being taken by the different stages of mapping, sending, and disk operations for each
sender. By default, the messages are logged every minute at the INFO level. The interval can
be changed if desired. The default is false, and Apama recommends disabling this setting in
production environments to prevent the gathering of the performance information from
reducing performance.

logPerformanceBreakdownIntervalSecs - Specifies the interval in seconds over which
performance throughput and timings information will be gathered and logged. Default is 60.

sessionRetryIntervalMillis - Specifies how long to wait between attempts to create a valid
JMS session and producer for this sender either after a serious error while using the previous
session or after a previous failed attempt to create the session. However, if the underlying JMS
connection has failed the connectionRetryIntervalMillis is used instead. Default value is
1000 ms.

JmsReceiverSettings

This bean defines advanced settings formessage receivers. it has no required properties. Typically
all receivers in all connectionswill share the same JmsReceiverSettings bean, but it is also possible
to use different settings for individual receivers.

Example:

Connecting Apama Applications to External Components 10.11.3 293

12 Using the Java Message Service (JMS)

<bean id="globalReceiverSettings"
class="com.apama.correlator.jms.config.JmsReceiverSettings">

<property name="dupDetectionPerSourceExpiryWindowSize" value="2000"/>
<property name="dupDetectionExpiryTimeSecs" value="120"/>
<property name="logJmsMessages" value="false"/>
<property name="logJmsMessageBodies" value="false"/>
<property name="logProductMessages" value="false"/>

</bean>

Supported properties:

logJmsMessages - if true, log information about all JMSmessages that are received (but not the
entire body) at INFO level. Default value is false.

logJmsMessageBodies - if true, log information about all JMS messages that are received,
including the entire message body at INFO level. Default value is false.

logProductMessages - if true, log information about all Apama events that are received at INFO
level. Default value is false.

logDetailedStatus - Enables logging of a dedicated INFO status line for each receiver and a
summary line for each parent connection. The default value is false (detailed logging is
disabled), which results in a single summary line covering all receivers and connections.

logPerformanceBreakdown - Enables periodic logging of a detailed breakdown of how much
time is being taken by the different stages of mapping, receiving, and disk operations for each
receiver. By default, the messages are logged every minute at the INFO level. The interval can
be changed if desired. The default is false, and Apama recommends disabling this setting in
production environments to prevent the gathering of the performance information from
reducing performance.

logPerformanceBreakdownIntervalSecs - Specifies the interval in seconds over which
performance throughput and timings information will be gathered and logged. Default is 60.

dupDetectionPerSourceExpiryWindowSize - used for EXACTLY_ONCE receiving, and specifies the
number of messages that will be kept in each duplicate detection domain per messageSourceId
(if messageSourceId is set on each message by the upstream system - messages without a
messageSourceIdwill all be grouped together into one window for the entire
dupDetectionDomainId). Default value is "2000". It can be set to 0 to disable the fixed-size
per-sender expiry window.

dupDetectionExpiryTimeSecs - used for EXACTLY_ONCE receiving, and specifies the time for
which uniqueMessageIds will be remembered before they expire. Default value is "120". It can
be set to 0 to disable the time-based expiry window.

maxExtraMappingThreads - Specifies the number of additional (non-receiver) threads to use for
mapping received JMS messages to Apama events. The default value is 0. Using a value of 1
means all mapping is performed on a separate thread to the thread receiving messages from
the bus; a value greater than 1 provides additional mapping parallelism. This setting cannot
be used if maxBatchSize has been set to 1. Using multiple separate threads for mapping may
improve performance in situationswheremapping of an individualmessage is a heavyweight
operation (for example, for complex XML messages) and where adding separate receivers is
not desired (because they involve the overhead of additional JMS sessions and reduced ordering
guarantees). Note that strictly speaking JMS providers do not have to support multi-threaded

294 Connecting Apama Applications to External Components 10.11.3

12 Using the Java Message Service (JMS)

construction of JMS messages (since all JMS objects associated with a receiver's Session are
meant to be dedicated to a single thread), so although in practice it is likely to be safe, it is
important to verify that this setting does not trigger any unexpected errors in the JMS provider
being used.

The order in which mapped events are added to the correlator input queue (of each public
context) is not changed by the use of extra mapping threads, as messages from all mapping
threads on a given receiver are put back into the original receive order at the end of processing
each receive batch.

sessionRetryIntervalMillis - Specifies how long to wait between attempts to create a valid
JMS session and consumer for this receiver either after a serious errorwhile using the previous
session, or after a previous failed attempt to create the session. However, if the underlying
JMS connection has failed the connectionRetryIntervalMillis is used instead). Default value
is 1000 ms.

receiverFlowControl - Specifieswhether application-controlledflow is enabled for each receiver.
When set to true, application-controlled flow control is enabled for each receiver, by listening
for the com.apama.correlator.jms.JMSReceiverFlowControlMarker event and responding by
calling the updateFlowControlWindow() action as appropriate. Default value is false.

Advanced configuration bean properties

The following properties are advanced tuning parameters, for use only when really necessary to
improve performance or work around a JMS provider bug. Since these are advanced properties,
it is possible that the default valuesmay change in any future release or that new tuning parameters
may be added that could alter the semantics of the existing ones, so be sure to carefully check the
Release Noteswhen upgrading, if you use any of these properties.

JMSSenderSettings

maxBatchSize - Themaximum (and target) number of events to be batched together for sending
inside a JMS local (non-XA) transaction (which improves performance onmany JMSproviders).
The maxBatchSize indicates the target number of events that will normally be sent in a single
batch unless the maxBatchIntervalMillis timeout expires first. The maxBatchSizemust be
greater than 0 and the special value of 1 is used to indicate that a non-transacted JMS session
should be used instead. Note that the same batching algorithm and parameters are used for
both reliable and non-reliable senders. The default value in this release is 500.

maxBatchIntervalMillis - Themaximum time a senderwill wait formore events on its channel
(and for reliable senders, also included in a correlator persist cycle) before timing out and
sending the events ready to be sent in the batch, even if the batch size is less than maxBatchSize.
The default value in this release is 500 ms.

JMSReceiverSettings

receiveTimeoutMillis - The timeout that will be passed to the JMS provider's
MessageConsumer.receive(timeout)method call to indicate themaximum time it should block
for when receiving the next message before returning control to the correlator. The default
value in this release is 300 ms. Some providers may require this timeout to be increased to

Connecting Apama Applications to External Components 10.11.3 295

12 Using the Java Message Service (JMS)

ensure thatmessages can be successfully received in high-latency network conditions, although
well-behaved providers should always work correctly with the default value. Reducing this
timeout may improve receive latency (due to reduced time waiting for the batch to complete)
on some providers; although note that many JMS providers do not strictly obey the timeout
specified here so the real time spent blocking while no messages are available may be
significantly higher.

maxBatchSize - The maximum (and target) number of JMSmessages to be received before the
batch is committed to the receive-side database (if receiver is using AT_LEAST_ONCE or
EXACTLY_ONCE reliability mode) and then added to the input queues of public contexts and
acknowledged to the JMS broker (whether reliable or not). The maxBatchSize indicates the
target number of messages that will normally be received in a single batch unless the
maxBatchIntervalMillis timeout expires first. The maxBatchSizemust be greater than 0 and
for BEST_EFFORT (non-reliable) receivers the special value of 1 is used to indicate that an
AUTO_ACKNOWLEDGE session will be used instead of the default CLIENT_ACKNOWLEDGE session
(though for reliable receivers CLIENT_ACKNOWLEDGE is always used even if maxBatchSize is 1).
The default value in this release is 1000.

The batch size becomes particularly importantwhen using the APP_CONTROLLED reliabilitymode.
In this case, youmight need to tweak the batch size to improve throughput based on how long
the application takes between suspending and acknowledging each batch of messages.

maxBatchIntervalMillis - themaximum time a receiverwill attempt towait formoremessages
to be received (and mapped) before timing out and processing the messages already received
as a single batch, even if the size of that batch is less than maxBatchSize. The default value in
this release is 500ms.Note that in practice,when nomessages are available,many JMSproviders
seem to block for longer than the specified receiveTimeoutMillis before returning, whichmay
lead to the true maximum batch interval being significantly longer than the value specified
here.

Designing and implementing applications for
correlator-integrated messaging for JMS
This section describes guidelines for designing and implementing applications that make use of
correlator-integrated messaging for JMS.

Using correlator persistence with correlator-integrated
messaging for JMS
Correlator-integrated messaging for JMS can be used with or without the correlator's state
persistence feature. In a persistent correlator, all reliability modes can be used (both reliable and
unreliable messaging), but in a non-persistent correlator only BEST_EFFORT (unreliable) messaging
is supported, and attempts to add senders or receivers using any other reliability mode will result
in an error.

In a persistent correlator, information about all senders and receivers is always stored in the
recovery datastore. This includes unreliable ones as well as reliable ones and statically defined
ones as well as dynamic ones. This means that persistent Apama applications never need to

296 Connecting Apama Applications to External Components 10.11.3

12 Using the Java Message Service (JMS)

re-create previously-added JMS senders and receivers after recovery. This will happen
automatically, even for BEST_EFFORT (unreliable) senders and receivers. For reliable senders and
receivers no messages or duplicate detection information will be lost after a crash or restart.

Because sender and receiver information is stored in the database, it is not permitted to shut down
a persistent correlator and then make changes such as removing static senders and receivers from
the configuration file before restarting. If the ability to remove senders and receivers is required,
theymust be added dynamically using EPL rather than from the configuration file. However, you
can add new senders and receivers to the configuration files between restarts, provided the
identifiers do not clash with any previously defined static or dynamic sender or receiver.

It is never possible to change the configuration of dynamic senders or receivers after they are
created. For static senders and receivers this is also mostly prohibited, with the exception that the
destination of a static receiver defined explicitly in the configuration file can be changed between
restarts of the correlator (provided the receiverId and dupDetectionDomainId remain the same).

To retain maximum flexibility, Apama recommends that customers follow the industry standard
practice of using JNDI names for queues and topics. This means that it is always possible to
configure any necessary redirections to allow the same logical (JNDI) name to be used in different
deployment environments, such as production and deployment (for dynamic as well as static
receivers).

There is no restriction on changing the connection factory or JNDI server details between restarts
of a persistent correlator. By using the same JNDI names (or if necessary, queue and topic names)
in all environments, but different isolated JMS and JNDI servers for production and testing, it is
possible to avoid unintended interactions between the production and test environments. At the
same time, this keeps the two configurations very similar and allows production datastores to be
examined in the test environment if necessary.

How reliable JMS sending integrates with correlator persistence

This topic describes the details of how JMS sending integrates with correlator persistence. This
information is intended for advanced users.

When sending JMS messages in a persistent correlator using any reliability mode other than
BEST_EFFORT, all events sent to a JMS sender are queued inside the correlator until the next persist
cycle begins. The events cannot be passed to JMS until the EPL application state changes that
caused them to be sent have been persisted, otherwise the downstream receiver might see an
inconsistent set of events in the case of a failure and recovery. In addition, messages sent using
any of the reliable modes are sent with the JMS PERSISTENT delivery mode flag by default, and are
guaranteed to remain in the correlator's persistence store until they have been successfully sent
to the JMS broker (or until the send failed for a reason other than connection loss).

Unique identifiers are generated and assigned to each message when they are sent, and persisted
with the events to allow downstream receivers to perform EXACTLY_ONCE duplicate detection if
desired (note, this assumes the uniqueMessageId ismapped into the JMSmessage in some fashion).

Once the next persist cycle has completed and both the events and the application state that caused
them have been committed to disk, the events can be sent to JMS. After messages have been
successfully sent to the JMS broker, they are lazily removed from the correlator's in-memory and
on-disk data structures. The latency of sent messages is therefore dependent on the time taken for

Connecting Apama Applications to External Components 10.11.3 297

12 Using the Java Message Service (JMS)

the correlator to perform a persist cycle (including the persist interval, the time required to take
a snapshot the correlator's state and commit it to disk, and any retries if the correlator cannot take
a snapshot for the state immediately), plus any time spent waiting to fill the batch of events to be
sent (although this is usually relatively small). Note that if a message send fails and it is not due
to the JMS connection being lost, then after a small number of retries it will be dropped with an
ERRORmessage in the log. If a send fails because the connection is down, the correlator simply
waits for it to come up again in all cases.

When sending messages in a persistent correlator using BEST_EFFORT, the behavior is different. In
this case, messages are passed to JMS immediately without waiting for a correlator persistence
cycle. This results in lower latency, but alsomeans it is possible for a client receiving JMSmessages
sent by the correlator to see inconsistent output in the event of a correlator failure. For example,
the correlator might send one set of messages with unique identifiers (for example, from
integer.incrementCounter()) but on restart send similar messages but in a different ordering,
while responses from the first set of messages may then be received, resulting in mismatches
between the requests and the responses being processed.

Important:
Consider carefully what behavior is required by your application, and use one of the reliable
modes instead of BEST_EFFORT if you need to avoid inconsistent output.

How reliable JMS receiving integrates with correlator persistence

This topic, for advanced users, describes how JMS receiving integrateswith correlator persistence.

When receiving in AT_LEAST_ONCE or EXACTLY_ONCEmode, messages are taken from the JMS queue
or topic in batches (using JMS CLIENT_ACKNOWLEDGEmode). The resultingApama events are persisted
in the reliable receive datastore (which is separate from the correlator's recovery datastore) and
then acknowledged back to JMS before the next batch of messages is received. After a batch of
events finishes being asynchronously committed to the datastore, it is added to the input queue
of each context.When the correlator next completes a persist cycle, all events that had at least been
added to the input queue by the beginning of the persist cycle have been (orwill be) reliably passed
to the application. This means that in AT_LEAST_ONCEmode they can be removed from the receive
datastore immediately.

If EXACTLY_ONCE is being used and the event wasmappedwith a non-empty uniqueMessageId from
the JMS message, the uniqueMessageId and other metadata are stored both in memory and in the
on-disk reliable datastore, and are kept there until the associated uniqueMessageId is expired from
the duplicate detector. Note however, that as an optimization, because the persisted event strings
are no longer needed once the event has been included in the correlator state database, any
particularly long event strings may become null in the database. The latency of receivedmessages
is therefore dependent on the time spent waiting for othermessages to be received to fill the batch,
and the time taken to commit the batch to the receive datastore.

When a persistent correlator is restarted and recovers its state from the recovery datastore, no new
JMS messages will be received from the broker until recovery is complete. Specifically, until the
correlator calls the onConcludeRecovery() action on all EPLmonitors that have defined this action.
It is possible that EPL monitors will see a small number of JMS messages that were received and
added to the input queue before the correlator was restarted. To be safe, any required listeners in
non-persistent monitors should be set up in onBeginRecovery().

298 Connecting Apama Applications to External Components 10.11.3

12 Using the Java Message Service (JMS)

Since a batch of messages is acknowledged to the JMS broker as soon as they have been written
to the Apama reliable receive datastore, there is no relationship between JMS message
acknowledgment to the broker and when the correlator begins or completes a correlator state
datastore persistence cycle. The maximum number of messages that may be received from the
JMS broker but not yet acknowledged is limited by the configured maxBatchSize (typically this is
1000 messages).

Sending and receiving reliably without correlator persistence
Apama applications that receive JMSmessages can prevent message loss without using correlator
persistence by controllingwhen the application acknowledges the receivedmessages. See “Receiving
messages with APP_CONTROLLED acknowledgements” on page 299.

Apama applications that use JMS senders with BEST_EFFORT reliability can prevent message loss
without using correlator persistence by waiting for acknowledgements that all messages sent to
a JMS sender context have been sent to the JMS broker. See “Sending messages reliably with
application flushing notifications” on page 301.

Receiving messages with APP_CONTROLLED acknowledgements

Apama applications that receive JMSmessages can prevent message loss without using correlator
persistence by controlling when the application acknowledges the received messages. To do this,
use APP_CONTROLLED reliability mode. With APP_CONTROLLED reliability mode, an application can tie
the sending of the JMS acknowledgement to application-defined strategies for preserving the effect
of the messages. For example, an application might need to ensure JMS messages are not
acknowledged to the broker until any output resulting from them has been written to a database,
a distributed MemoryStore, a downstream JMS destination, or a connected correlator.

An alternative to using APP_CONTROLLED reliability mode is to use correlator persistence with
reliabilitymode set to AT_LEAST_ONCE. See “Using correlator persistencewith correlator-integrated
messaging for JMS” on page 296

When reliability mode is set to APP_CONTROLLED, applications are still entirely responsible for
handling duplicate messages as well as anymessage re-reordering that occurs. Applicationsmust
be able to cope with any message duplication or reordering caused by the JMS provider
implementation or failures in the sender, receiver or broker.

Note:
If a license file cannot be found, the correlator is limited to BEST_EFFORT only messaging. See
"Running Apama without a license file" in Introduction to Apama.

In an Apama application, a receiver that is using APP_CONTROLLED reliability mode goes through
the following cycle:

1. Receive a batch of messages. Typically, there are several hundred in a batch. The number is
controlled by the maxBatchSize and maxBatchIntervalMillis receiver settings. Note that
regardless of the value of maxBatchIntervalMillis, the receiver will not be suspended while
no events are being received. See “Advanced configuration bean properties” on page 295.

Connecting Apama Applications to External Components 10.11.3 299

12 Using the Java Message Service (JMS)

2. Suspend operation at the end of the batch. After suspending, the receiver sends a
JMSAppControlledReceivingSuspended event to the context that is handling the messages.

3. Application commits the receivedmessages or commits the results of receivedmessages, such
as state changes or output messages to other systems. For example, the received messages
might have causedmessages to be sent to a database, a distributedMemoryStore, a downstream
JMSdestination or a connected correlator. These operationsmay involve a synchronous plug-in
call, or sending a request and then listening for an asynchronous event to indicate completion
or acknowledgement.

4. Acknowledge receipt of the batch of messages to the JMS broker. After application-specific
commit operations for this message batch are complete, the messages no longer need to be
retained by the JMS broker. The application calls
JMSReceiver.appControlledAcknowledgeAndResume() to acknowledge the message batch and
resume receiving. The cycle then starts again.

Following is a simple example of the application logic for responding to
JMSAppControlledReceivingSuspended events and allowing themessage batch to be acknowledged
after the messages have been suitably handed off to another system:
on all JMSAppControlledReceivingSuspended(receiverId="myReceiver")
{
on MyFinishedPersistingReceivedEvents(requestId=persistReceivedEventsSomehow())

{
jms.getReceiver("myReceiver").appControlledAckAndResume();

}
}

The code below shows an example of using APP_CONTROLLED receiving, together with flush
acknowledgements from the JMS sender. See “Sendingmessages reliablywith application flushing
notifications” on page 301. With this strategy, received JMS messages are acknowledged to the
JMS broker only after the context gets an acknowledgement from the JMS sender that all the
associated output messages have been sent to the JMS broker.
on all JMSAppControlledReceivingSuspended(receiverId="myReceiver")
{
on JMSSenderFlushed(requestId =

jmsConnection.getSender("mySender").requestFlush()){
jms.getReceiver("myReceiver").appControlledAckAndResume();

}
}

It is important to use the same context to process the messages from a given receiver and to call
appControlledAckAndResume().

To improve the throughput of an APP_CONTROLLED receiver, try adjusting the maxBatchSize and
maxBatchIntervalMillis receiver settings. The goal is to balance the time spent receiving JMS
messages and the time spent committing the results. If the batches are too small then throughput
can decrease. If the batches are too large then latency can increase and the JMS broker could use
excessive memory to hold the unacknowledged messages.

It is possible to use the APP_CONTROLLED reliability mode for a receiver in a persistence-enabled
correlator. In this case, process the messages and call appControlledAckAndResume() from a
non-persistentmonitor. Acknowledgements cannot be controlled fromapersistentmonitor because

300 Connecting Apama Applications to External Components 10.11.3

12 Using the Java Message Service (JMS)

the JMS acknowledgement would get out of sync with the monitor state after recovery. If you try
to call appControlledAckAndResume() from a persistent monitor an exception will be thrown.

Note:
JMSmessages that result in mapping failures cannot be handled by the EPL application so they
are usually acknowledged automatically.

Sending messages reliably with application flushing notifications

Applications that use BEST_EFFORT reliability to send JMS messages can prevent message loss
without using persistent monitors. To do this, each time an application sends a message to the
JMS sender channel it also keeps the state required to re-generate the message. Periodically, the
application requests the JMS sender to flush a batch of messages to the JMS broker. After all
messages in this batch are sent to a JMS broker, the JMS sender sends a flush acknowledgement
to the context that requested flushing. When the application receives the flush acknowledgement
it executes an application-defined strategy for clearing state associated with the messages that
have been sent to the JMS sender channel. This protects the application against failure of the
correlator host.

Note:
Messages are still asynchronously sent to the JMS broker even when no flushing has been
requested. Requesting a flush simply gives the application the ability to be notified when the
messages have been handed off to the JMS broker.

The typical behavior of an application that sends messages reliably without using correlator
persistence is as follows:

1. Continuously send messages to the JMS sender channel.

At the same time, the application must keep track of the messages that have been sent to the
sender channel but not yet flushed to the JMS broker. These are referred to as outstanding
messages.

Also, the applicationsmust reliably keepwhatever state is required to re-generate eachmessage.
It is important to ensure that the application would not lose data if the outstanding messages
were lost due to failure of the correlator node. This is typically achieved by delaying
acknowledgement of the incoming JMS messages, Apama events or database/MemoryStore
transactions that are generating the sent messages.

2. Request JMS sender to flush outstanding messages.

Periodically, for example, for every 1000 outstanding messages, the application requests that
the sender flush the outstandingmessages to the JMS broker. This is accomplished by invoking
the JMSSender.requestFlush() action. After sending themessages to the JMS broker, this action
sends a JMSSenderFlushed acknowledgement event to the context that requested flushing.

The application should set up a listener for the JMSSenderFlushed event whose requestId field
is equal to the requestId generated by the requestFlush() action. Also, this listener needs a
reference to whatever state corresponds to this batch of outstanding messages. For example,
this might be a transaction id.

Connecting Apama Applications to External Components 10.11.3 301

12 Using the Java Message Service (JMS)

You must determine how many messages to send before flushing the batch. Flushing each
message is not advised as it would add a noticeable performance overhead. However, you do
not want to flush messages so infrequently that excessive memory or buffer space is required
to hold the state associated with the outstanding messages.

Be sure to implement any requiredmechanism for downstream receivers to dealwith duplicate
messages. Typically, an application does this by adding a unique id to each message.

3. Continue sending events to the JMS sender channel.

In many cases, it is fine to continue sending new events to the sender channel while waiting
for acknowledgement that previous batches have been flushed. That is, it is okay to have
multiple batches in flight to the JMS broker at any one time. This improves throughput but is
more complicated to implement. Whether it is possible to have multiple flushes in flight
simultaneously in your specific application depends onwhat the application needs to dowhen
it receives a JMSSenderFlushed acknowledgement event.

4. Application receives a flush notification event.

When the JMS sender has finished processing all events in a batch that is being flushed to a
JMS broker, it sends a JMSSenderFlushed event to the context that invoked the requestFlush()
action. At this point, the messages are the responsibility of the JMS broker and they are safe
from loss even if the correlator or other nodes fail.

The application should now remove any state associated with the messages in this batch. For
example, the application can acknowledge the incomingmessages that generated themessages
sent to the JMS broker, or commit a database or MemoryStore transaction, or send an event
that allows some other component to clear associated state from its buffers.

While this feature allows a well-designed application to prevent message loss in the case of a
correlator failure, it cannot prevent message loss due to invalid mapping rules or non-existent
JMS destinations. Such failures are recorded in the correlator log, but any messages associated
with these failures are still included in the next flush acknowledgement, even though sending
them to the JMS broker resulted in a failure. This behavior

Prevents failure of one message indefinitely blocking the sending of subsequent messages

Applies only to application bugs that would not benefit from retrying

If a recoverable failure occurs, such as loss of connection to the JMS broker, Apama keeps trying
to send themessages until the connection is restored.While thismight result in a long delay before
the flush acknowledgement can be sent, no messages are lost. The flush acknowledgement is
therefore an indication that the message batch has been fully processed by the correlator's JMS
sender to the best of its ability. The flush notification is not a guarantee that every message in the
batch was successfully delivered to the broker. For example, problems in the application or in the
mapping configuration might have prevented successful delivery to the JMS broker.

Sending messages reliably without using correlator persistence is available only for senders that
are using BEST_EFFORT reliability mode. Senders that are using AT_LEAST_ONCE or EXACTLY_ONCE
reliability mode use the correlator's persistence feature and so have no need for manual send
notifications.

302 Connecting Apama Applications to External Components 10.11.3

12 Using the Java Message Service (JMS)

A call to the requestFlush() action in a persistent monitor throws an exception. Allowing this call
would cause the JMS acknowledgement state to be out of syncwith themonitor state after recovery.

The codebelowprovides an example of sendingmessages reliablywithflushing acknowledgements.
using com.apama.correlator.jms.JMSSender;
using com.apama.correlator.jms.JMSConnection;

monitor FlushMessagesToJMSBroker {
. . .

// Each time the application sends an event to the JMS sender
// channel, increment the number of messages sent but not flushed.
send MyEvent() to jmsConnection.getSender("mySender").getChannel();
sendsSinceLastFlush := sendsSinceLastFlush + 1;
if sendsSinceLastFlush = 1000 {

// Stash state needed to re-send messages in case of correlator
// failure. After receiving a flush acknowledgement, this state can
// be cleared. In this example, keep a transaction id for a database.
integer transactionAssociatedWithFlushRequest := currentTransaction;

// Optionally, allow multiple flushes to be in flight concurrently.
currentTransaction := startNewTransaction();

// Request JMS sender to flush messages to the JMS broker.
// Listen for flush acknowledgement event and ensure that state
// that was saved can be cleared when the listener fires.
on JMSSenderFlushed(requestId =

jmsConnection.getSender("mySender").requestFlush()){
commitTransaction(transactionAssociatedWithFlushRequest);

}
}

}

When using sender flushing, an application can optionally set the JMS sender messageDeliveryMode
property to PERSISTENT. This ensures that the messages are protected from loss by the JMS broker.
See jms:sender properties in “XML configuration bean reference” on page 288.

Using the correlator input log with correlator-integrated
messaging for JMS
The correlator input log can be used in applications that usemost correlator-integratedmessaging
for JMS features including sending, receiving and listening for status events. The input log will
include a record of all events thatwere received from JMS so there is no need for JMS to be explicitly
enabled with the --jmsConfig option when performing replay. Instead, the resulting input log can
be extracted and used in the normal way, without the --jmsConfig option. Attempting to perform
replaywith correlator-integratedmessaging for JMS is not supported and is likely to fail, especially
with reliable receivers in a persistent correlator.

Note that the "dynamic" capabilities of correlator-integrated messaging for JMS do not currently
work in a replay correlator (because an EPL plug-in is used behind the scenes), so if you need to
retain the possibility of using an input log youmust not use dynamic senders and receivers or call
the JMSSender.getOutstandingEvents()method.

Connecting Apama Applications to External Components 10.11.3 303

12 Using the Java Message Service (JMS)

Reliability considerations when using JMS
When using the EXACTLY_ONCE, AT_LEAST_ONCE or APP_CONTROLLED reliability mode, Apama's
correlator-integrated messaging for JMS provides a "reliable" way to send messages into and out
of the correlator such that in the event of a failure, any received messages whose effects were not
persisted to stable storage will be redelivered and processed again, and that the events received
from the correlator by external systems are consistent with the persisted and recovered state.

Correlator-integratedmessaging for JMS guarantees nomessage loss, assuming there is stable
storage and that the JMS broker behaves reliably. Also, theremust be no fatalmessagemapping
errors.

When using EXACTLY_ONCE reliabilitymode, correlator-integratedmessaging for JMS guarantees
no message duplication within a specifically configured window size. The window size, for
example, might be set to the last 2000 events or events received in the last two minutes. Note
that evenwith the help ofApama's EXACTLY_ONCE functionality, JMSmessage duplicate detection
is not a simple or automatic process and requires careful design. Customers are strongly
encouraged to architect their applications to be tolerant of duplicate messages and use the
simpler AT_LEAST_ONCE reliability mode instead of EXACTLY_ONCEwhen possible. (Using the
APP_CONTROLLED reliability mode for receivers is an advanced alternative.)

Apama's correlator-integratedmessaging for JMSprovides a best effort correctmessage ordering
but this is not guaranteed. The exact message ordering behavior is broker-specific.
Correlator-integrated messaging does not make ordering guarantees in the event of a broker
or client failure. Occasionally, some JMS brokers reorder messages unexpectedly. If your
application requires correct message order, it may be possible to set the JMSXGroupSeq and
JMSXGroupIDmessage properties to request the chosen JMSprovider implementation to provide
ordering for a group of related messages. It is not possible to provide ordering across all
messageswithout forcing use of a single consumer,whichwould reduce throughput scalability.

Care must be taken when designing, configuring and testing the application to ensure it can cope
with significant fluctuations in message rates, as well as serious failures such as network or
component failures that lasts for several minutes, hours or days. Consider using JMS message
expiry to avoid flooding queueswith unnecessary or stalemessages on recovery after a long period
of down time.

Duplicate detection when using JMS
Apamaprovides an EXACTLY_ONCE receiver reliability setting that allows a finite number of duplicate
messages to be detected and dropped before they get to the correlator. This setting can be used to
reduce the chance of duplicates; however with JMS, duplicate detection is a complex process.
Therefore, customers are strongly encouraged to architect their applications to be tolerant of
duplicate messages and use the simpler AT_LEAST_ONCE reliability mode instead of EXACTLY_ONCE
when possible.

Configuring duplicate detection is an inexact science given that it depends considerably on the
behavior of the sender(s) for a queue, and requires careful architecture and sizing to ensure robust
operation in normal use and expected error cases.Moreover it is not possible to guarantee duplicate
messages will never be seen without an infinite buffer of duplicates. Give particular attention to

304 Connecting Apama Applications to External Components 10.11.3

12 Using the Java Message Service (JMS)

architectures where multiple sender processes are writing to the same queue, especially if it is
possible that one sender may send a duplicate message it has taken off another failed sender that
has not recorded the fact that it is already processed and sent out a given message.

Duplicate detection is a trade-off between probability of an old duplicate not being recognized as
such, and the amount of memory and disk required, which will also have an impact on latency
and throughput.

Selecting the right value for the dupDetectionExpiryTimeSecs is a very important aspect of ensuring
that the duplicate detection process will operate reliably — detecting duplicates where necessary
without running out of memory when something goes wrong. The expiry time used for the
duplicate detector should take into account how the JMSproviderwill dealwith several consecutive
process or connection failures on the receive side, especially if the JMS provider temporarily holds
backmessages for failed connections in an attempt to work around temporary network problems.
Be sure to consult the documentation for the JMSprovider being used to understand how it handles
connection failures. It is a good idea to conduct tests to see what happens when the connection
between the JMS broker and the correlator goes down. When testing, consider using the
"rMaxDeliverySecs=" value from the "JMS Status:" line in the correlator log to help understand
the minimum expiry time needed to catch redelivered duplicates. Note, however, this is only
useful if the JMS provider reliably sets the JMSRedelivered flag when performing a redelivery. A
good rule of thumb is to use an expiry time of two to three times the broker's redelivery timeout.

Note that although space within the reliable receive (duplicate detection) datastore is reclaimed
and reused when older duplicates expire, the file size will not be reduced. There is currently no
mechanism for reducing the amount of disk space used by the database, so the on-disk size may
grow, bounded by the peak duplicate detector size, but will not shrink.

Messages that are subject to duplicate detection contain:

uniqueMessageId - an application-level identifier which functions as the key for determining
whether a message is functionally equivalent (or identical) to a message already processed,
and should therefore be ignored.

messageSourceId - an optional application-specific stringwhich acts as a key to uniquely identify
upstreammessage senders. This could be a standard GUID (globally unique identifier) string.
If provided, the messageSourceId is used to control the expiry of uniqueMessageIds from the
duplicate detection cache, allowing dupDetectionPerSourceExpiryWindowSizemessages to be
kept per messageSourceId. This massively improves the reliability of the duplicate detection
while keeping the window size relatively small, since if one sender fails then recovers several
hours later, there is no danger of another (non-failed) sender filling up the duplicate detection
cache in the meantime and expiring the ids of the first sender causing its duplicates to go
undetected.

The key configuration options for duplicate detection are:

dupDetectionPerSourceExpiryWindowSize - The number of messages that will be kept in each
duplicate detection domain per messageSourceId (if messageSourceId is set on each message
by the upstream system - messages without a messageSourceIdwill all be grouped together
into onewindow for the entire dupDetectionDomainId). This property is specified on the global
JmsReceiverSettings bean. It is usually configured based on the characteristics of the upstream
JMS sender, and the maximum number of in-doubt messages that it might resend in the case

Connecting Apama Applications to External Components 10.11.3 305

12 Using the Java Message Service (JMS)

of a failure. The default value in this release is 2000. It can be set to 0 to disable the fixed-size
per-sender expiry window.

dupDetectionExpiryTimeSecs - The time forwhich uniqueMessageIdswill be remembered before
they expire. This property is specified on the global JmsReceiverSettings bean. The default
value in this release is 2 minutes. It can be set to 0 to disable the time-based expiry window
(which makes it easier to have a fixed bound on the database size, though this is not an option
if the JMS provider itself causes duplicates by redelivering messages after a timeout due to
network problems).

dupDetectionDomainId - An application-specific string which acts as a key to group together
receivers that form a duplication detection domain, for example, a set of receivers that must
be able to drop duplicate messages with the same uniqueMessageId (which may be from one,
ormultiple upstream senders). This property is specified on the jms:receiver bean. By default,
the duplicate detection domain is always the same as the JMS destination name and
connectionId, so cross-receiver duplicate detection would happen only if multiple receivers
in the same connection are concurrently listening to the same queue; duplicates would not be
detected if sent to a different queue name, or if sent to the same queue name on a different
connection, or if JNDI is used to configure the receiver but the underlying JMS name referenced
by the JNDI name changes. Also note that if the message streams processed by each receiver
were being partitioned using message selector, unnecessary duplicate detection would be
performed in this case. The duplicate detection domain name can be specified on a per-receiver
basis to increase, reduce or change the set of receivers across which duplicate detection will
be performed. Common values are:

dupDetectionDomainId=connectionId+":"+jmsDestinationName - the default for queues.

dupDetectionDomainId=jmsDestinationName - if using receivers to access the same queue
from multiple separate connections.

dupDetectionDomainId=jndiDestinationName - if using JNDI to configure receiver names,
and needing the ability to change the queue or topic that the JNDI name points to.

dupDetectionDomainId=connectionId+":"+receiverId - the default for topics; also used if
each receiver should check for duplicates independently of other receivers. This is useful
if receivers are already using message selectors to partition the message stream, which
implies that cross-receiver duplicates are not possible.

dupDetectionDomainId=<application-defined-name> - if using multiple receivers per
selector-partitionedmessage stream. The name is likely to be related to themessage selector
expression.

Duplicate detection only works if the upstream JMS sender has specified a uniqueMessageId for
each message (the uniqueMessageId is typically as a message property, but could alternatively be
embedded within the message body if the mapper is configured to extract it). Any messages that
do not have this identifier will not be subject to duplicate detection. The uniqueMessageId string
is expected to be unique across all messages within the configured dupDetectionDomainId (for
example, queue), includingmessageswith different messageSourceIds. Bydefault, sent JMSmessages
would have a uniqueMessageId of seqNo:messageSourceId, where seqNo is a contiguous sequence
number that is unique for the sender, for example:
uniqueMessageId=1:mymachinename1.domain:1234:567890:S01

306 Connecting Apama Applications to External Components 10.11.3

12 Using the Java Message Service (JMS)

uniqueMessageId=2:mymachinename1.domain:1234:567890:S01
uniqueMessageId=3:mymachinename1.domain:1234:567890:S01
uniqueMessageId=1:mymachinename2.domain:4321:987654:S01
uniqueMessageId=2:mymachinename2.domain:4321:987654:S01
uniqueMessageId=1:mymachinename2.domain:4321:987654:S02
uniqueMessageId=2:mymachinename2.domain:4321:987654:S02

...

To reliably perform duplicate detection if there are multiple senders writing to the same queue
(without the Apama receiver having to configure a very large and therefore costly time window
to prevent premature expiry of ids from a sender that has failed and produces no messages for a
while then recovers, possibly sending duplicates as it does so), the upstream senders should be
configured to sendwith a globally-unique messageSourceId identifying themessage source/sender,
which should also be configured in the mapping layer of the receiver.

Apama's duplicate detection involves a set of fixed-size per-sourceId queues, andwhen the queue
is full the oldest items are expired to a shared queue ordered by timestamp (time received by the
correlator's JMS receiver) whose items are expired based on a timewindow. So the receiver settings
controlling duplicate detection window sizes are:

dupDetectionPerSourceExpiryWindowSize

dupDetectionExpiryTimeSecs

uniqueMessageIds are expired from the per-source queue (and moved to the time-based queue)
when it is full of newer ids, or when a newer message with the same uniqueMessageId already in
the queue for that source is received.

uniqueMessageIds are expired from the time-based queue (and removed from the database
permanently) when they are older than the newest item in the time-based queue by more than
dupDetectionExpiryTimeSecs.

Performance considerations when using JMS
Whendesigning an application that uses correlator-integratedmessaging for JMS itmay be relevant
to consider the following topics that relate to performance issues.

There are no guarantees about maximum latency. Persistent JMS messages inevitably incur
significant latency compared to unreliable messaging, and Apama's support for JMS is focused
around throughput rather than latency. Messages can be held up unexpectedly by many factors
such as: the JMS provider; by connection failures; by waiting a long time for the receive-side
commit transaction; by the broker acknowledge() call taking a long time; or by waiting a long time
for the correlator to do an in-memory copy of its state.

Multiple receivers on the same queue may improve performance. But consider that "For PTP, JMS
does not specify the semantics of concurrent QueueReceivers for the same Queue; however JMS
does not prohibit a provider from supporting this. Therefore, message delivery to multiple
QueueReceiverswill depend on the JMS provider's implementation. Applications that depend on
delivery to multiple QueueReceivers are not portable".

Connecting Apama Applications to External Components 10.11.3 307

12 Using the Java Message Service (JMS)

If performance is an issue, be sure to check the correlator log for WARN and ERRORmessages,
which may indicate your application or configuration has a connection problem that may be
responsible for the performance problem.

Ensure that the correlator is not runningwith DEBUG logging enabled or is logging allmessages.
Either of these will obviously cause a big performance hit. Apama recommends running the
correlator at INFO log level; this avoids excessive logging, but still retains sufficient information
that may be indispensable for tracking problems.

In practice,most performance problems are caused bymapping, especiallywhenXML is used.
Whenever possible, Apama recommends avoiding the use of XML in JMS messages due to
the considerable overhead that is always added by using such a complex message format. For
example, use MapMessage or a TextMessage containing an Apama event string.

If you are receiving several different event types, ensure that the conditional expressions used
to select which mapping to execute are as simple as possible. In particular, there will be a
significant performance improvement if JMS message properties are used to distinguish
between differentmessage types instead of XML content inside themessage body itself because
JMS message properties were designed in part for this purpose.

Use the Correlator Status lines in the log file to checkwhether the bottleneck is the JMS runtime
or in the EPL application itself. A full input queue ("iq=") is a strong indicator that the
application may not be consuming messages fast enough from JMS.

Consider enabling the logPerformanceBreakdown setting in JmsSenderSettings and
JmsReceiverSettings to provide detailed low-level information aboutwhich aspects of sending
and receiving are the most costly. This may indicate whether the main bottleneck, and hence
the main optimization target, is in the message mapping or in the actual sending or receiving
ofmessages. If mapping is not themain problem, itmay be possible to achieve an improvement
by customizing some of the advanced sender and receiver properties such as maxBatchSize
and maxBatchIntervalMillis.

Consider using maxExtraMappingThreads to perform the mapping of received JMS messages
on one or more separate threads. This is especially useful when dealing with large or complex
XML messages.

Take careful measurements. The key to successful performance optimization is taking and
accurately recording good measurements, along with the precise configuration changes that
were made between each measurement. It is also a good idea to take multiple measurements
over a period of at least several minutes (at least), and take account of the amount of variation
or error in the measurements (by recording minimum, mean, and maximum or calculating
the standard deviation). In this way it is possible to notice configuration changes that have
made a real and significant impact on the performance, and distinguish them from random
variation in the results. Note thatmany JMSproviders are observed to behave badly and exhibit
poor performancewhen overloaded (for example, when sending so fast that queues inside the
broker fill up and things begin to block). For this reason, the best way to test maximum
steady-state performance is usually to create a way for the process that sends messages to be
notified by the receiving process about how far behind it is. For example, if the sender and
receiver are both correlators, engine_connect can be used to create a fast channel from the
receiver back to the sender, and the test system can be set to send Apama events to the sender
channel every 0.5 seconds so it knows howmany events have been received so far. This allows

308 Connecting Apama Applications to External Components 10.11.3

12 Using the Java Message Service (JMS)

better performance testing with a bound on the maximum number of outstanding messages
(sent but not yet received) to prevent the broker being overwhelmed.

Be careful when measuring performance using a virtual machine rather than dedicated
hardware. VMs often have quite different performance characteristics to physical hardware.
Take particular care when using VMs running on a shared host, which may be impacted by
spikes in the disk/memory/CPU/network of other unrelated VMs running on the same host
that belong to different users.

Performance logging when using JMS

The JmsSenderSettings and JmsReceiverSettings configuration objects both contain a property
called logPerformanceBreakdownwhich can be set to true to enable measurement of the time taken
to perform the various operations required for sending and receiving, with messages logged
periodically at INFO level with a summary of measurements taken since the last log message. The
default logging interval is once per minute.

Although this property should not be enabled in a production system where performance is a
priority because the gathering of the performance data adds unnecessary overhead, it can be
indispensable during development and testing for demonstrating what each sender and receiver
thread is spending its time doing. To produce more useful statistics, note that the first batch of
messages sent or received after connection may be ignored (which will affect all statistics logged,
including the number of messages received and throughput). All times are measured using the
standard Java System.nanoTime()method, which should provide the most accurate time
measurements the operating system can achieve, though not usually to nano second accuracy. For
more information on the logPerformanceBreakdown property, see “XML configuration bean
reference” on page 288.

Receiver performance when using JMS

Each receiver performance log message has a low-level breakdown of the percentage of thread
time spent on various aspects of processing eachmessage andmessage batch, aswell as a summary
line stating the (approximate) throughput rate over the previous measurement interval, and an
indication of the minimum, mean (average) and maximum number of events in each batch that
was received.

The items that may appear in the detailed breakdown are:

RECEIVING - time spent in the JMS provider's MessageConsumer.receive()method call for each
message received.

MAPPING - time spent mapping each JMS message to the corresponding Apama event. If
maxExtraMappingThreads is set to a non-zero value then this is the time spent waiting for
remainingmessagemapping jobs to complete on their background thread(s) at the end of each
batch.

DB_WAIT - (only for reliable receive modes) time spent waiting for background reliable receive
database operations (writes, deletes, etc) to complete, per batch.

DB_COMMIT - (only for reliable receivemodes)time spent committing (synching) receivedmessages
to disk at the end of each batch.

Connecting Apama Applications to External Components 10.11.3 309

12 Using the Java Message Service (JMS)

APP_CONTROLLED_BLOCKING - for receivers that are using APP_CONTROLLED reliability mode, this
is the time spent waiting for the EPL monitor to call the appControlledAckAndResume() action.
A monitor calls this action after it finishes processing a batch of messages from the receiver.

ENQUEUING - (only for BEST_EFFORT and APP_CONTROLLED receivemode) time spent adding received
messages to each public context's input queue.

JMS_ACK - time spent in the JMS provider's Message.acknowledge()method call at the end of
processing each batch of messages.

R_TIMEOUTS - the total time spent waiting for JMS provider to complete
MessageConsumer.receive()method calls that timed out without returning a message from
the queue or topic, per batch. Indicates either that Apama is receiving messages faster than
they are added to the queue or topic or that the JMS provider is not executing the receive
(timeout) call very efficiently or failing to return control at the end of the requested timeout
period.

FLOW_CONTROL - the total time spent (before each batch) blocking until the EPL application
increases the flow control window size by calling
JMSReceiverFlowControlMarker.updateFlowControlWindow(...). In normal usage, this should
be negligible unless some part of the system has failed or the application is not updating the
flow control window correctly.

TOTAL - aggregates the total time taken to process each batch of received messages.

Sender performance when using JMS

Each sender performance logmessage has a low-level breakdown of the percentage of thread time
spent on various aspects of processing each message and message batch, as well as a summary
line stating the approximate throughput rate over the previous measurement interval, and an
indication of the minimum, mean (average) and maximum number of events in each batch that
was sent.

The items that may appear in the detailed breakdown are:

MAPPING - time spent mapping each Apama event to the corresponding JMS message. This
includes the time spent looking up any JMS queue, topic, or JNDI destination names, unless
cached.

SENDING - time spent in the JMS provider's MessageProducer.send()method call for each
message.

JMS_COMMIT - time spent in the JMS provider's Session.commit()method call for each batch of
sent messages (only if a JMS TRANSACTED_SESSION is being used to speed up send throughput).

WAITING - the total time spent waiting for the first Apama event to be passed from EPL to the
JMS runtime for sending, per batch. This is affected by what the EPL code is doing, and for
reliable sender modes, also by the (dynamically tuned) period of successful correlator persist
cycles.

BATCHING - the total time spent waiting for enough Apama events to fill each send batch, after
the first event has been passed to the JMS runtime.

310 Connecting Apama Applications to External Components 10.11.3

12 Using the Java Message Service (JMS)

TOTAL - aggregates the total time taken to process each batch of sent messages.

Configuring Java options and system properties when using
JMS
Sometimes it is necessary to specify Java system properties to configure a JMS provider's client
library, or to change JVM options such as the maximummemory heap size. Because these settings
inevitably affect all JMS providers that the correlator is connecting to, in addition to any JMon
applications in the correlator, Java optionsmust be specified on the correlator command line rather
than in a JMS connection's configuration file.

Each Java option to be passed to the correlator should be prefixed with -J on the command line,
for example, -J-Dpropname=propvalue -J-Xmx512m. To set Java optionswhen starting the correlator
from Software AG Designer, edit the Apama launch configuration for your project as described
below.

To edit the launch configuration

1. In the Project Explorer, right-click the project name and selectRun As > Run Configurations.
The Run Configurations dialog is displayed.

2. In Run Configurations dialog, in the Project field, make sure the your project is selected.

3. On Run Configurations dialog's Components tab, select the correlator to use and click Edit.
The Correlator Configuration dialog is displayed.

4. In the Correlator Configuration dialog, in the Extra command line arguments field, add the
system property (for example, -J-Dpropname=propvalue -J-Xmx512m) and click OK.

Diagnosing problems when using JMS
This topic contains several approaches for diagnosing JMS issues you may encounter.

Note:
If the correlator log indicates it has connected to JMS but you are not receiving any messages,
this is usually due to amissing call to JMS.onApplicationInitialized. This call is required before
the correlator will attempt to receive any messages from JMS.

Consider contacting the vendor of the JMSprovider that is being used. JMS brokers are complex
pieces of software with many configuration options. JMS providers often maintain on-line
databases of known bugs and issues. Software AG is not in a position to provide detailed
support or performance tuning for JMS brokers provided by a third party, but the provider
may be able to suggest useful changes to configuration options that can affect performance
and reliability trade-offs and provide further assistance tracking down crashes, hangs,
performance, disconnection and flow control problems.

Connecting Apama Applications to External Components 10.11.3 311

12 Using the Java Message Service (JMS)

Check the correlator log file for WARN and ERRORmessages that may indicate the underlying
problem. Also check for any log lines "Longest delay between a JMS message being sent and
the broker delivering it to this receiver is now ", especially after an unexpected
disconnection or when testing a correlator/broker machine or network failure. This will give
an indication of how your broker redelivers in-doubt messages, and may affect the size of the
duplicate detection time-based expiry window.

Check the JMS broker's log files and console for error messages or warnings.

Consider temporarily using logJMSMessages and logProductMessages to display all messages
being sent and received. This is particularly useful for problems related to mapping; on the
other hand it is not useful for diagnosing performance-related issues.

Use the "JMS Status:" lines to understand what is going on in more detail. Consider setting
logDetailedStatus=true to get more in-depth per-sender and per-receiver status lines.

Check for any log lines "Longest delay between a JMS message being sent and the broker
delivering it to this receiver is now " which may indicate that the broker is behaving
strangely or that queued messages from a previous test run are unexpectedly being received,
perhaps causing mapping failures or performance problems.

If further assistance from Software AG is required to track down a problem, it is essential to
provide a copy of the full correlator log file and the JMS configuration being used to ensure
that all the required information is available.

To capture the correlator log output, edit the launch configuration as follows:

1. Right-click the project and select Run As > Run Configurations from the context
menu.

2. Ensure the configuration for this project is selected.

3. Select the Components tab.

4. Edit the DefaultCorrelator setting by adding extra command line arguments:

--logfile logs/correlator.log

5. Optionally add --truncate to clear the log file at start up to eliminate confusion with
output from previous runs.

Note, simply copying lines from the Console view is usually not adequate for support
purposes (for example, status lines are missing and in some cases header information is
missing as well).

To collect the essential JMS configuration files:

1. Right-click the project and select Properties from the context menu.

2. In the Resource section, note the directory information listed in the Location field.
(Copy the information if desired.)

3. In the file system, navigate to that directory. (Paste the directory information into the
Run command of the Windows Start menu.)

312 Connecting Apama Applications to External Components 10.11.3

12 Using the Java Message Service (JMS)

4. Zip up the contents of the bundle_instance_files\Correlator-Integrated_JMS
sub-directory.

If you are using JNDI to get the connection factory, it is usually necessary to first add and
configure a JNDI name for the connection factory you wish to use using the administration
tools provided by the JMS implementation you are using. For example, if using Universal
Messaging, this would be the Enterprise Manager tool. A commonmistake when configuring
the JNDI connection factory binding is to use localhost rather than a fully qualified host name
or IP address. For many JMS implementations, this will not permit connections from hosts
other than the one that the server is running on.

JMS failures modes and how to cope with them
Apamaprovidesmany features that simplify the integration process, but JMS brokers are complex
pieces of software performing a complex task and successfully designing a truly reliable application
built on JMS requires careful thought and testing, as well as a full understanding of the behavior
and configuration of your chosen JMS provider.

The following list highlights some of the things that can go wrong, and how they are handled by
Apama along with suggestions for how they might be handled by a solution architect.

Failure of connection between the correlator and the JMS-broker (due to machine failure or
network problems) –Apama handles this bywriting an ERROR to the correlator log and sending
JMSConnectionStatus, JMSSenderStatus, and JMSReceiverStatus events detailing the error to
all affected connections, senders, and receivers. An application can use these events to display
the problem on a dashboard or send an email or text message to notify an administrator. Once
the connection has gone downApamawill repeatedly try to re-establish it, at a rate determined
by the connectionRetryIntervalMillisproperty of jms:connection (once per secondbydefault).
As soon as the connection has been re-established, all associated senders and receivers will
create a session using the new connection and begin to send and receive again. Note that
occasionally some third party JMS libraries have been observed to hang after a network problem,
preventing successful reconnection, especially when there is a mismatch between the .jar
versions used on the client and server; it is worth testing to ensure this does not affect your
deployment. During the period when the connection is down, the JMS sender will be unable
to send events to the JMS broker, so all such events will be queued inmemory - see the Sending
messages too fast failure mode for more details.

Sending messages too fast (because the connection is down; because the broker's queue is
exceeded due to a downstream JMS client receiving blocking; or simply because the attempted
send rate is too high) – A bounded number of unsent messages will be held in a Java buffer
until sent to JMS, but if the number of outstanding events exceeds that buffer they will be
queued in C++ code. It is possible the correlator could fail with a C++ out of memory error in
rare cases where too many events are sent to a reliable sender between persistence cycles.
However in most cases the behavior will be that the JMS runtime acts as an Apama 'slow
consumer' and in time causes correlator contexts to blockwhen calling send until themessages
can be processed. In time this may also cause the input queue to fill up, to prevent an out of
memory error occurring. All of this behavior can be avoided if necessary by using the
JMSSender.getOutstandingEvents() action to keep track of the number of outstanding events
and take some policy-based action when this number gets too high. Typical responses might

Connecting Apama Applications to External Components 10.11.3 313

12 Using the Java Message Service (JMS)

be to page some out to a database, notify an administrator, or begin to drop messages. Also
note that many JMS providers have built in support for 'paging' or 'flow to disk' that, when
enabled, allows messages to be buffered on disk client-side if the broker cannot yet accept
them. In some cases this may be more desirable than causing the correlator to block.

Receiving messages too fast – In a well-designed system an Apama application will usually
be able to keep up with the rate of messages arriving from JMS. However it is important to
consider the possibility of a large number of messages being received quickly on startup or
after a period of downtime (for example, due to hardware failure), or from a backlog of input
messages building up when downstream systems such as databases or JMS destinations that
the application needs to use to complete processing of input messages become unresponsive.

If messages are received too fast for theApama application's listeners to synchronously process
them, the input queue will fill up, after which the JMS receivers will be blocked from sending
more messages until the backlog is cleared. However, if the listeners for the input messages
complete quickly but kick off asynchronous operations for each input message (for example,
event listeners for database requests, or adding the messages to EPL data structures) then it
is possible that the correlator could instead run out of memory if messages continue to be
received faster than they can be fully processed. The correlator's support for JMS provides a
feature called “receiver flow control” to deal with these situations, which allows an EPL
application to set a window size representing the number of events that each JMS receiver can
take from the broker, thereby putting a finite bound on the number of outstanding events and
operations. See “Receiver flow control” on page 276 for more information about receiver flow
control. Another approach to avoid a very large warm-up period when dealing with old
messages during startup is to make use of the JMSmessage time-to-live header when sending
messages. This ensures that older messages can be deleted from the queue by the JMS broker
once they are no longer useful. Some JMS providers may also have configuration options to
enable throttling of message rates.

JMS destination not found for a receiver (when the JMS connection is still up) – This could
be a transient problem such as a situation where a JMS server is up but a JNDI server is down,
where or a JNDI name has not yet been configured. The failure could also be a permanent one
such as a destination name that is invalid. Apama handles this case by writing an ERROR log
message, sending a JMSReceiverStatus eventwith status of "DESTINATION_NOT_FOUND" or possibly
"ERROR"), then backing off for the configured sessionRetryIntervalMillis (1 second by default),
before retrying. If it is expected that destination names may often be invalid, it might be best
to use dynamic rather than static receivers. This allows the Apama application to take a
policy-based decision on whether to give up trying to look up the destination and remove the
receiver after a timeout period.

JMS error sending message (when the JMS connection is still up) – This could be a transient
problem such as a situationwhere the JMS server has a problem but the connection's exception
listener not yet triggered. The failure could be permanent one such as a case where a JMS
message is invalid for some reason. Apama writes an ERROR log message when this happens.
If the error is specific to this message such as MessageFormatException or
InvalidDestinationException then themessage is simply dropped. In other error cases, Apama
will back off for the configured sessionRetryIntervalMillis (1 second by default) then close
and recreate the session and MessageProducer before retrying once. After two failed attempts
Apama stops trying to send the message to avoid the sender getting stuck. If a number of
messages are being sent in a transacted batch for performance reasons, when a failure occurs

314 Connecting Apama Applications to External Components 10.11.3

12 Using the Java Message Service (JMS)

Apama retries each message in the batch one by one in their own separate transactions to
ensure that problems with one message do not affect other messages.

JMS destination not found when sending a message (when the JMS connection is still up) –
This could be a transient problem such as a JMS server being up but with a JNDI server down,
or a JNDI name not configured yet. It could be a permanent failure such as a destination name
that is invalid. Apama handles this case in a fashion similar to the way it handles the JMS error
sending message case mentioned above, except that it does not attempt to retry sending if it
determines that a destination not found error was the cause, since it is unlikely to work a
second time after an initial failure, and other messages being sent to different destinations
would get held up if it did.

Exceptionwhile amappingmessage (during sending or receiving; typically caused by invalid
mapping rules, invalid conditional expressions, ormalformedmessages, such as an unexpected
XML schema) – If the mapping error is so serious that the message cannot be mapped at all
(for example, receiving a message that did not map any of the defined conditional mapping
expressions), an ERROR is logged and the message is dropped. If the error affects only one of
the field mapping rules, then an ERROR is logged and the field will be given a default value
such as "", 0, null, etc. Note that a large batch of badly formed messages can result in a large
number of messages and stack traces being written to the log, so care should be taken to avoid
this by comprehensive testing and careful writing of conditional expressions.

Error parsing received event type (due tomismatch betweenmapping rules and injected event
types, or failure to inject the required types) – The correlator logs a WARNmessage when events
are received that do not match any injected event type; the log file should be checked during
integration testing to ensure this is not happening.

EXACTLY_ONCE duplicate detector fails to detect duplicates – Correctly detecting all
duplicate messages involves ensuring that the upstream JMS client (if not a correlator) is
correctly putting truly unique identifiers into all the messages it sends, and that the receiving
JMS client is configured with a sufficiently large window of duplicate identifiers to catch all
likely cases in which duplicates might be sent. When configuring the receiver's duplicate
detector, it is particularly important to understand the circumstances under which your JMS
provider will redeliver messages — some providers will redeliver messages several minutes
after they were originally sent especially in the event of a failure, which means the duplicate
detector timewindowneeds to be at least two or three times larger than the redeliverywindow.
If messages are being put onto the bus from multiple senders, it is an extremely good idea to
set a messageSourceId on each message to allow correlator-integrated messaging for JMS to
maintain a separate duplicate detectionwindow for eachmessage source. In some applications
it may be useful to set a time-to-live on sent messages to place a bound on themaximumdelay
between sending amessage and having it received and successfully recognized as a duplicate,
in those situationswhere it is better to risk dropping potentially non-duplicate oldermessages
than to risk re-processing duplicate older messages.

EXACTLY_ONCE duplicate detector out of memory – It is important to ensure that there is
enough memory on the machine and enough allocated to the correlator's JVM to hold the all
of the duplicate detection information required for both normal usage and exceptional cases;
if this memory is exceeded then the correlator process will fail with an out of memory error.
Note that this only applies to reliable receivers using EXACTLY_ONCE reliability; due to the
additional complexity arising from duplicate detection, customers are advised to use this
feature only when really needed — in many cases it is possible to architect an application so

Connecting Apama Applications to External Components 10.11.3 315

12 Using the Java Message Service (JMS)

that it is tolerant of duplicate messages (idempotent) which completely avoids the need for all
design, sizing and testingwork that EXACTLY_ONCEmode entails. If duplicate detection is enabled,
the total amount ofmemory required by the duplicate detector for each dupDetectionDomainId
is a function of the average message size, the number of distinct messageSourceIds (per
dupDetectionDomainId), and the configuration parameters
dupDetectionPerSourceExpiryWindowSize and dupDetectionExpiryTimeSecs. It is not practical
to accurately estimate the exact memory requirements of the duplicate detector in advance;
instead, it is recommended that applications with high reliability requirements are carefully
tested to determine how much memory is required with the peak likely memory usage, and
to ensure that the correlator's JVM is configured with a sufficiently high maximum memory
limit to accommodate this (for example on the command line set -J-Xmx2048m for a 2GB heap).
Themost important parameter towatch is the dupDetectionExpiryTimeSecs, since the time-based
expiry queue does not have a bounded number of items, so if it is set to be too large or a lot
of messages are received unexpectedly in a very short space of time it could grow to a very
large size. The "JMS Status" lines that the correlator periodically logs provide invaluable
information about the number of duplicate detection ids being stored at any time, as well as
the amount of memory the JVM is currently using. Enabling the logDetailedStatus receiver
settings flag will turn on additional information for each receiver that includes a breakdown
of the number of duplicate detection identifiers stored in each part of the duplicate detector.

Disk errors/corruption – Both correlator persistence and the reliable receive functionality of
correlator-integrated messaging for JMS depend on the disk subsystem they are written to. It
is important to use some form of storage that is reliable such as a NAS/Network-Attached
Storage device or SAN/storage-area network and which is guaranteed to not introduce
corruption in the event of a failure such as a power failure. Apama also relies on the file system
to implement correct file locking; if this is not the case or if the device is not correctly configured,
then it is possible that messages could be lost or the correlator could fail, either in normal
operation or in the event of an error.

JMSprovider bugs –Anumber ofwidely used enterprise JMS providers have bugs thatmight
result in message loss, reordering, or unexpected re-deliveries (causing duplication). In other
cases some bugs manifest as broker or client-side hangs, Java deadlocks, thread and memory
leaks, or other unexpected failures. These are especially common when a JMS client like the
correlator has been disconnected uncleanly from the JMS broker, perhaps due to the process
or network connection being forcibly killed. Correlator-integratedmessaging for JMS includes
workarounds for many known third-party bugs in the JMS providers that Apama supports to
make life easier for customers. However, it is not possible to findworkarounds for all problems.
Therefore Apama encourages customers to familiarize themselves with the release notes and
outstanding bugs lists published by their JMS vendor — ideally before selecting a vendor —
and to conduct sufficient testing early in the application development process to allow for a
change of JMS vendor if required.

316 Connecting Apama Applications to External Components 10.11.3

12 Using the Java Message Service (JMS)

IV Working with IAF Plug-ins

13 The Integration Adapter Framework ... 319

14 Using the IAF .. 327

15 C/C++ Transport Plug-in Development ... 369

16 C/C++ Codec Plug-in Development ... 375

17 C/C++ Plug-in Support APIs .. 387

18 Transport Plug-in Development in Java .. 391

19 Java Codec Plug-in Development .. 397

20 Plug-in Support APIs for Java .. 405

21 Monitoring Adapter Status .. 409

22 Out of Band Connection Notifications .. 423

23 The Event Payload ... 429

Connecting Apama Applications to External Components 10.11.3 317

318 Connecting Apama Applications to External Components 10.11.3

IV Working with IAF Plug-ins

13 The Integration Adapter Framework

■ Overview .. 320

■ Architecture .. 321

■ The transport layer ... 323

■ The codec layer .. 323

■ The Semantic Mapper layer ... 324

■ Contents of the IAF .. 325

Connecting Apama Applications to External Components 10.11.3 319

This section describes how to use the Apama Integration Adapter Framework (IAF). The IAF is a
middleware-independent and protocol-neutral adapter tailoring framework designed to provide
for the easy and straightforward creation of software adapters to interfaceApamawithmiddleware
buses and other message sources. It provides facilities to generate adapters that can communicate
with third-party messaging systems, extract and decode self-describing or schema-formatted
messages, and flexibly transform them into Apama events. Vice-versa, Apama events can be
transformed into the proprietary representations required by third-party messaging systems. It
provides highly configurable and maintainable interfaces and semantic data transformations. An
adapter generated with the IAF can be re-configured and upgraded at will, and in many cases,
without having to restart it. Its dynamic plug-in loading mechanism allows a user to customize it
to communicate with proprietary middleware buses and decode message formats.

There are two ways of integrating with Apama through software. The first is to use the low-level
Client Software Development Kits (SDKs) to write your own custom software interface (see). The
second is to instantiate an adapter with the higher-level Integration Adapter Framework (IAF).
This is described in the topics below.

Note:
The IAF architecture is superseded by connectivity plug-ins. Therefore, Software AG strongly
recommends choosing connectivity plug-ins over the IAF when creating new adapters and
connectivity.

Overview
The IAF is a middleware-independent and protocol-neutral adapter tailoring framework. It is
designed to allow easy and straightforward creation of software adapters to interface Apamawith
middleware buses and other message sources. It provides facilities to generate adapters that can
communicate with third-party messaging systems, extract and decode self-describing or
schema-formatted messages, and flexibly transform them into Apama events. In the opposite
direction, Apama events can be transformed into the proprietary representations required by
third-party messaging systems. It provides highly configurable and maintainable interfaces and
semantic data transformations. An adapter generated with the IAF can be re-configured and
upgraded at will, and in many cases, without having to restart it. Its dynamic plug-in loading
mechanism allows a user to customize it to communicate with proprietary middleware buses and
decode message formats.

On the other hand, the SDKs provide lower-level client application programming interfaces that
allow one to directly connect to Apama and transfer Apama Event Processing Language (EPL)
code and events in and out. The SDKs provide none of the abstractions and functionality of the
IAF, and hence their use is only recommendedwhen a developer needs towrite a highly customized
and very high performance software client, or wishes to integrate existing client codewith Apama
in process.

The IAF is available on all platforms supported by Apama, although not all adapters will work
on all platforms. For the most up-to-date information about supported platforms and compilers,
see Software AG's Knowledge Center in Empower at https://empower.softwareag.com.

320 Connecting Apama Applications to External Components 10.11.3

13 The Integration Adapter Framework

https://empower.softwareag.com

Architecture
The first step in integrating Apama within a user environment is to connect the correlator to one
or more message/event sources and/or sinks. In the majority of cases the source or provider of
messages will be some form of middleware message bus although it could also be a database or
other storage based message source, as well as an alternative network-based communication
mechanism, like a trading system. The same applies for the sink or consumer of messages.

Thesemessage sources and/or sinks vary extensively. Typically each comeswith its ownproprietary
communications paradigm, communications protocol, message representation and programming
interfaces. Interfacing any software like Apamawith a source/sink of messages like amessage bus
therefore requires the writing of a specialized software adapter or connector, which needs to be
maintained should themessaging environment or themessage representation change. The adapter
needs to interface with the messaging middleware or message source, receive messages from it
and decode them, and then transform them into events that Apama can understand and process.
The latter transformation is not always straightforward, as themessage representationmight vary
from message to message and require semantic understanding.

Conversely, the events generated by Apama need to be processed in the inverse direction and
eventually end up back on the message bus.

Note:
In the Apama documentation, a message traveling from a message source through the IAF and
into Apama is described as traveling downstream, whereas a message output as an alert from
Apama and progressing back out through the IAF towards a message sink is described as
traveling upstream.

In order to facilitate development of software adapters, Apama provides the IAF. In contrast to
the SDKs, the IAF is not a programming library. The IAF is effectively a customizable, middleware
independent, generic adapter that can be adapted by a user to communicatewith theirmiddleware
and apply their specific semantic transformations to their messages.

Connecting Apama Applications to External Components 10.11.3 321

13 The Integration Adapter Framework

As illustrated above, the IAF acts as the interface between the messaging middleware and the
correlator. There are four primary components to the IAF:

The Transport Layer. This is the layer that communicates with the user's message source/sink.
Its functionality is defined through one ormoreApama or user-providedmessage source/sink
specific transport plug-ins, written in C, C++ or Java.

The Codec Layer. The codec layer translates messages from any custom representation into a
normalized form and vice-versa. The transformation is carried out by one of its codec plug-ins.
These can be provided by Apama or by the user, and may be written in C, C++ or Java. Note
that Java codec plug-insmay only communicatewith Java transport plug-ins, andC/C++ codec
plug-ins with C/C++ transport plug-ins.

The Semantic Mapper. This layer provides functionality to transform the messages received
from the message source into Apama events. The Semantic Mapper is a standard component
that is configured for use with a particular adapter by means of a set of semantically rich
translation mapping rules. These rules define both how to generate Apama events from
externally generatedmessages and howuser-custommessages for an external destinationmay
be generated from Apama events.

An adapter can be configured to bypass this kind of mapping in the Semantic Mapper. Used
this way, the Semantic Mapper converts the string form of an Apama event directly to a
normalized form and vice-versa.

The Apama Interface layer. This layer abstracts away communicationwithApama's correlator.
It injects EPL definitions and event instances into the correlator and asynchronously receives
back events from it.

Additionally, the engine_send and engine_receive tools can be run against the IAF simply by
supplying the port on which the IAF is running. For example, running

322 Connecting Apama Applications to External Components 10.11.3

13 The Integration Adapter Framework

engine_receive -p 16903

connects to the IAF running on the default port and receives all event emitted by it.

The next sections explore the transport, codec and Semantic Mapper layers in more detail.

The transport layer
The transport layer is the front-end of the IAF. The transport layer's purpose is to communicate
with an external message source and/or sink, extracting downstreammessages from the message
source ready for delivery to the codec layer, and sending Apama events already encoded by the
codec layer on to the message sink.

This layer interfaceswith themiddlewaremessage bus ormessage source/sink through the latter's
custom programming interface. It receives and dispatches messages from and to it as well as
carrying out other proprietary operations. Depending on the nature of themessage bus ormessage
source in use, these operations could include opening a database file and running SQL queries on
it, registering interest in specific message topics with a message bus, or providing security
credentials for authentication. Note that if the IAF is also being used to output messages back to
a message sink, then it must also carry out the operations required to enable this; for example,
opening and writing to a database file, or dispatching messages onto a message bus.

As this functionality depends entirely on themessage source and/or sink the IAF needs to interface
with, the transport layer's functionality is loaded dynamically through a custom transport plug-in.

Although Apama provides a set of standard transport plug-ins for popular messaging systems,
the user may develop new transport plug-ins. See “C/C++ Transport Plug-in Development” on
page 369 and “Transport Plug-in Development in Java” on page 391 for the Transport plug-in
Development Specifications for C/C++ and Java, which describe how custom transport plug-ins
may be developed in the C, C++ and Java programming languages.

The transport layer can contain one or more transport layer plug-ins. These are loaded when the
adapter starts, and the set of loaded plug-ins can be changed while the adapter is running. In
addition, a loaded plug-inmay be re-configured at any time using the IAFClient tool. If a transport
plug-in requires startup or re-configuration parameters, these need to be supplied in the IAF
configuration file as documented in “The IAF configuration file” on page 339.

Because a transport layer plug-in effectively implements a custommessage transport, this manual
uses the terms transport layer plug-in and event transport interchangeably.

The codec layer
While the transport layer communicates with the custommessage sources and sinks and extracts
messages, such as stock trade data, from them, the responsibility of the codec layer is to correctly
interpret and decode each message into a ‘normalized' format on which the semantic mapping
rules can be run; similarly in the upstream direction a codec may be responsible for encoding a
normalized message in an appropriate format for transmission by particular transport(s).

Message sources like middleware message buses typically use proprietary representation of
messages. Messages might appear as strings (possibly human readable or otherwise encoded) or

Connecting Apama Applications to External Components 10.11.3 323

13 The Integration Adapter Framework

sequences of binary characters.Messagesmight also be self-describing (possibly in XMLor through
some other proprietary descriptive format) or else be structured according to a schema available
elsewhere.

Producing a universal generic normalized format from these messages requires the codec layer
to understand the particular format of the messages. In the upstream direction the codec layer
needs to encode the messages correctly according to the destination message sink.

As with the transport layer, in order to enable this custom functionality, the IAF is designed to
dynamically load codec plug-ins that are capable of decoding and encoding the messages being
received,when suppliedwith any required configuration properties. Apamaprovides some generic
codec plug-ins, such as the StringCodec codec. This can decode most string based name-value
representations of messages once it is configured with the syntactic elements used to delimit the
elements in a message. In addition the user may develop proprietary codec plug-ins. See “C/C++
Codec Plug-in Development” on page 375 and “Java Codec Plug-in Development” on page 397 for
the Codec plug-inDevelopment Specifications for C/C++ and for Java, which describe how custom
codec plug-ins may be developed using the C, C++ and Java programming languages.

An adapter can load multiple codec plug-ins (to deal with different message types). These are
loaded at startup and the set of loaded codecs can be changed while the adapter is running.
Individual codec plug-insmay also be re-configured at any time. If a codec plug-in requires startup
or re-configuration parameters, these need to be supplied in the IAF configuration file as
documented in “The IAF configuration file” on page 339.

This manual uses the terms codec layer plug-in and event codec interchangeably.

The Semantic Mapper layer
The Semantic Mapper maps and transforms incoming messages into Apama events that can be
passed into the correlator. Conversely, it can accept incoming Apama events and map them into
messages that can be sent upstream on the user's message sink.

Apama events are rigidly defined. Every event must be structured according to a well-defined
type definition. Therefore all events are of a specific named type, where this defines the number
of fields (or parameters) in the event, their order, the name of each field, and its type. Furthermore
it is possible to define which fields are relevant for querying in EPL event expressions, and which
are not. See Developing Apama Applications for further information on event type definitions and
EPL event expressions. This rigorous format permits the correlator to be highly optimized and
contributes towards Apama's scalable performance.

The sourcemessages that are to be passed into Apama as events (or the sinkmessages that Apama
needs to generate) might match this specification, in which case the mapping will be
straightforward. However, they might also differ in several ways, some of which are listed here:

The messages might be self-describing, and need to be parsed in order to deduce what fields
they contain.

The fields contained in every message might appear in varying order.

324 Connecting Apama Applications to External Components 10.11.3

13 The Integration Adapter Framework

Some messages of different types and with differing sets of fields might reflect the same
information but in a different format (e.g. trade events fromdifferentmarkets or news headlines
from different sources).

The set of fields contained in messages might differ even if the messages are all of the same
type.

The messages might not be of an obvious type, and their nature (e.g. a trade event or a news
headline) might need to be deduced from their contents.

The set of fields might be enhanced over time to capture additional information.

Some messages might have fields that are completely irrelevant.

Some messages might have fields that are irrelevant for matching on but might be useful
otherwise.

In order to address these conditions and allow meaningful Apama events to be created from
external messages, the Semantic Mapper supports a semantically rich set of translation and
transformation rules. These need to be expressed in the IAF configuration file.

The rules available are described in “Event mappings configuration” on page 343.

You can configure an adapter so that some events bypass this kind of mapping in the Semantic
Mapper. Instead of mapping each field in an incoming event to a field in an Apama event or the
converse, the entire event is treated as a string in a single field.

Contents of the IAF
The Integration Adapter Framework contains the following components:

Core files – these include the IAFRuntime, themanagement tools and the libraries they require.

Example adapters written in C and Java – this includes the complete sources of the
FileTransport/JFileTransport transport layer plug-ins and the StringCodec/ JStringCodec
plug-ins, sample configuration files, a file with a set of input messages, an EPL file with a
sample application, and a set of reference result messages.

A suite of development materials – these include the C/C++ header files and Java API sources
required to develop transport and codec layer plug-ins for both languages. Also included is a
skeleton transport and codec plug-in in C, the IAF configuration file XML Document Type
Definition (DTD), a makefile for use with GNUMake on UNIX, and a ‘workspace' file for use
with Microsoft's Visual Studio.NET on Microsoft Windows.

Connecting Apama Applications to External Components 10.11.3 325

13 The Integration Adapter Framework

326 Connecting Apama Applications to External Components 10.11.3

13 The Integration Adapter Framework

14 Using the IAF

■ The IAF runtime .. 328

■ IAF Management – Managing a running adapter I ... 335

■ IAF Client – Managing a running adapter II .. 336

■ IAF Watch – Monitoring running adapter status ... 337

■ The IAF configuration file ... 339

■ IAF samples ... 364

Connecting Apama Applications to External Components 10.11.3 327

This section describes how to start and manage the Integration Adapter Framework and how to
specify an adapter's configuration file.

The IAF runtime
Once installed, running the IAF is straightforward. As already stated, the IAF is not a development
library but a generic adapter framework whose functionality can be tailored according to a user's
requirements through loading of the appropriate plug-ins.

In order to create an adapterwith the IAF, onemust supply a configuration file. This file – described
in “The IAF configuration file” on page 339 – specifieswhich plug-ins to load andwhat parameters
to configure them with, defines the translation and transformation rules of the Semantic Mapper,
and configures communication with Apama.

The adapter can then be started as follows:
iaf configuration.xml

IAF library paths
In order for the IAF to successfully locate and load C/C++ transport layer and codec plug-ins, the
location(s) of these must be added to the environment variable LD_LIBRARY_PATH on UNIX, or PATH
on Windows.

A transport or codec plug-in library may depend on other dynamic libraries, whose locations
should also be added to the LD_LIBRARY_PATH or PATH environment variable as appropriate for the
platform. The documentation for a packaged adapter will state which paths should be used for
the adapter's plug-ins. Note that on theWindows platform, the IAFmay generate an errormessage
indicating that it was unable to load a transport or codec plug-in library, when in fact it was a
dependent library of the plug-in that failed to load. On UNIX platforms the IAF will correctly
report exactly which library could not be loaded.

When using the IAF with a Java adapter the location of the Java Virtual Machine (JVM) library is
determined in the same way. On UNIX systems the LD_LIBRARY_PATH environment variable will
be searched for a library called libjvm.so, and on Windows the IAF will search for jvm.dll, in
directories on JAVA_HOME environment variable, then in any other directories on the PATH environment
variable. Using a JVM other than the one shipped with Apama is not supported and Technical
Support will generally request that any Java-related problems with the IAF are reproduced with
the supported JVM.

See “Java configuration (optional)” on page 363 for information about how the location of Java
plug-in classes are determined.

IAF command-line options
The iaf executable starts the IAF. This is located in the bin directory of the Apama installation.

328 Connecting Apama Applications to External Components 10.11.3

14 Using the IAF

Synopsis

To start the adapter, run the following command:
iaf [options] [config.xml]

where config.xml is the name of a configuration file using the format described in “The IAF
configuration file” on page 339. A configuration file must be provided unless the -h or -V options
are used.

When you run this command with the –h option, the usage message for this command is shown.

Description

Unless the –e or --events options are used, the above will generate and start a custom adapter,
load and initialize the plug-ins defined in the configuration file, connect to Apama, and start
processing incoming messages.

When the –e or --events options are used, the iaf executable generates event definitions that can
be saved to a file and injected during your application's startup sequences as specified by Software
AG Designer or Apama command-line tools. If either of these options is used, the IAF will load
the IAF configuration file, process it, generate the event definitions and print themout onto stdout
(standard output) and promptly exit. A valid configuration file must be supplied with either of
these options. The output definitions are grouped by package,with interleaved comments between
each set. If all the event types in the configuration are in the same package, the output will be valid
EPL code that can be injected directly into the correlator. Otherwise, it will have to be split into
separate files for each package. The IAF can be configured to automatically inject event definitions
into a connected correlator, but this is not the default behavior. The event definitions generated
by the -e or --events options are exactlywhat the IAFwould inject into the correlator, if configured
to do so.

For more information about the service configuration file, see "Using the Apama component
extended configuration file" in Deploying and Managing Apama Applications.

If the --logfile and --loglevel options are provided, any logging settings set in the IAF
configuration file (<logging> and <plugin-logging>) will be ignored.

If the IAF cannot write to the log file specified either with the --logfile option or in the adapter's
configuration file, the IAF will fail to start.

Options

The iaf executable takes the following options:

DescriptionOption

Displays version information for the iaf executable.-V | --version

Displays usage information.-h | --help

Connecting Apama Applications to External Components 10.11.3 329

14 Using the IAF

DescriptionOption

Specifies the port on which the IAF should listen for
commands. The default is 16903.

-p port | --port port

Specifies the name of the file to which to write log
information. The default is stderr. See also "Text

-f file | --logfile file

internationalization in the logs" inDeploying andManaging
Apama Applications.

Sets the level of information that is sent to the log file.
Available levels are TRACE, DEBUG, INFO, WARN, ERROR, FATAL,
CRIT and OFF. The default is INFO.

-l level | --loglevel level

Specifies that if the log file already exists, the IAF should
empty it first. The default is to append to the log file.

-t | --truncate

Sets a user-defined name for the component. This name is
used to identify the component in the log messages.

-N name | --name name

Dumps event definitions to stdout and then exits.-e | --events

Sends information to the log every p seconds. See also “IAF
log file status messages” on page 331.

--logQueueSizePeriod p

Specifies the name of the file that contains the process
identifier. This file is created at process startup and can be

--pidfile file

used, for example, to externally monitor or terminate the
process. The IAF will remove that file after a clean
shutdown.

It is recommended that the file name includes the port
number to distinguish different IAFs (for example, iaf-
16903.pid).

The IAF takes an exclusive lock on the pidfile while it is
running. This means that if you have another IAF or
correlator running using the same pidfile, the second
process will fail to start up. You should not run multiple
components from the same configuration using the same
pidfile. In other cases, existing pidfileswill be overwritten,
even if they contain a process identifier of a running
process.

Reserved for usage under guidance by Apama support.
See also “Using the Apama component extended
configuration file” on page 333.

-Xconfig file | --configFile file

330 Connecting Apama Applications to External Components 10.11.3

14 Using the IAF

IAF log file status messages
The IAF sends status information to its log file every 5 seconds (the default behavior) or at time
intervals you specify with the --logQueueSizePeriod option when you start the IAF. For example:

Status: ApEvRx=589 ApEvTx=2056000 TrEvRx=2056008 TrEvTx=587 vm=407200 pm=956240 si=0.0
so=0.0 oq=10

Where the fields have the following meanings:

DescriptionField

Number of Apama events received since the IAF started. These events were
received from the correlator that the IAF is connected to.

ApEvRx

Number of Apama events sent since the IAF started. These events were sent
to the correlator that the IAF is connected to.

ApEvTx

Number of events received by all transports in the IAF since the IAF started.
These events were received from user-defined sources outside the correlator.

TrEvRx

Number of events sent from all transports in the IAF since the IAF started.
These events were sent to user-defined targets outside the correlator.

TrEvTx

Number of kilobytes of virtual memory being used by the IAF process.vm

Number of kilobytes of physical/resident memory being used by the IAF
process.

pm

The rate (pages per second) at which pages are being read from swap space.si

The rate (pages per second) at which pages are being written to swap space.so

Sum total of events across all output queues of the IAF.oq

IAF log file rotation
Rotating the IAF log file refers to closing the IAF log file while the IAF is running and opening a
new log file. This lets you archive log files and avoid log files that are too large to easily view.

Each site should decide on and implement its own IAF log rotation policy. You should consider
the following:

How often to rotate log files.

How large an IAF log file can be.

What IAF log file naming conventions to use to organize log files.

There is a lot of useful header information in the log file being used when the IAF starts. If you
need to provide log files to Apama technical support, you should be able to provide the log file

Connecting Apama Applications to External Components 10.11.3 331

14 Using the IAF

that was in use when the IAF started, as well as any other log files that were in use before and
when a problem occurred.

Note:
Regularly rotating log files and storing the old ones in a secure location may be important as
part of your personal data protection policy. For more information, see "Protecting and erasing
data from Apama log files" in Developing Apama Applications.

On Windows, to automate log file rotation, you can set up scheduled tasks that run the following
tools:

The following command instructs the IAF to close the log file it is using and start using a log
file that has the name you specify. When you run this request to rotate the log file the IAF log
file has a new name each time you rotate it. This is because Windows does not let you change
the name of a file that is being used. If the name of the file contains blanks, be sure enclose it
in quotation marks.
iaf_management --setLogFile new-log-filename

You can configure the IAF to log to two separate files. Each command instructs the IAF to start
using the specified log file for either the IAF core processes (generic IAF information such as
status messages) or the IAF plug-in processes (transports and codecs being used). If the name
of a file contains blanks, be sure enclose it in quotation marks.
iaf_management -r setCoreLogFile new-log-filename
iaf_management -r setPluginLogFile new-log-filename

Consider using two IAF log files when you need to focus on diagnosing something specific to
your application, for example, you need to easily spot authentication messages. If you do use
separate log files youmight want to rotate them at the same time so that they stay in sync with
each other.

On UNIX, to automate log file rotation, you can write a cron job that periodically does any of the
following:

Set log file name:
iaf_management --setLogFile new-log-filename

Set core log file and plug-in log file:
iaf_management -r setCoreLogFile new-log-filename
iaf_management -r setPluginLogFile new-log-filename

Reopen the log:
iaf_management --reopenLog

Move the IAF log file before you execute the --reopenLog option. Since UNIX allows you to
rename a file that is in use, the IAF processes will log to the renamed log file. When you then
request the IAF to reopen its log file, the IAF creates a new log file with the same name. For
example, suppose you move iaf_current.log to iaf_archive_2014_01_31.log and then send
a reopenLog request. The IAF creates iaf_current.log, opens it, and begins sending any log
messages to it. Be sure to enclose the argument after -r in quotation marks.

332 Connecting Apama Applications to External Components 10.11.3

14 Using the IAF

If you are using two IAF log files, the --reopenLog option applies to both of them. Consequently,
you want to move both log files before you issue the --reopenLog option.

Send a SIGHUP signal:

You canwrite a cron job that sends a SIGHUP signal to IAFprocesses. The standardUNIX SIGHUP
mechanism causes IAF processes to re-open their log files.

The cron job should first rename log files. Since UNIX allows you to rename a file that is in
use, the IAF processes will log to the renamed log files until the cron job sends a SIGHUP to IAF
processes. The SIGHUP signal makes the processes re-open their log files and so they open files
that have the old names and begin using them.Of course, these files are initially empty because
the IAF must re-create them.

Sending a SIGHUP signal does the same thing as the reopenLog request. Also, a SIGHUP signal
forces the IAF configuration file to be reloaded and this reload stops and starts the transports
and codecs.

If you instruct the IAF to open a named log file and the IAF cannot open that log file or cannot
write to that log file, the IAF sends log messages to stderr but does not generate an error.

Apama does not support automatic log file rotation based on time of day or log file size.

Note:
Some people use the term “log rolling” instead of “log rotation”.

Using the Apama component extended configuration file
The Apama component extended configuration file is an optional file that can be used by the IAF.
You can use it to do the following:

Bind Apama server components to a particular set of addresses.

Specify that Apama client connections must be from a particular IP address or range of IP
addresses.

Set environment variables for Apama components.

In an extended configuration file, if a line includes a special character that you want to be treated
as a literal, you must escape it by inserting a backslash just before it. A character that follows two
consecutive backslashes (\\) is treated as a literal. Single quotes inside double quotes are treated
as a literal. Double quotes inside single quotes are treated as a literal.

Note:
To configure the correlator, see "Configuring the correlator" in Deploying and Managing Apama
Applications.

Connecting Apama Applications to External Components 10.11.3 333

14 Using the IAF

Binding server components to particular addresses

To bindApama server components to a particular address or set of addresses, specify a BindAddress
line for each address. Specify this in the [Server] section of the extended configuration file. For
example:
[Server]
BindAddress=127.0.0.1:15903
BindAddress=10.0.0.1

You can specify as many BindAddress lines as you want. Clients can connect to any of the listed
addresses.

An IP address is required. If you do not specify a port, the Apama server components use the port
that is specifiedwhen the correlator is started. Thismakes it possible to share extended configuration
files if you want to restrict connections according to only addresses.

If you do not specify an extended configuration file when you start the correlator, or there are no
BindAddress entries in the extended configuration file, theApama components bind to thewildcard
address (0.0.0.0).

Ensuring that client connections are from particular addresses

To ensure that client connections are from particular addresses, add one or more AllowClient
entries to the extended configuration file in the [Server] section. For example:
[Server]
AllowClient=127.0.0.1
AllowClient=192.168.128.0/17

An AllowClient entry takes an IP address, as in the first example above, or a CIDR (Classless
Inter-DomainRouting) address range, as in the second example above.With these example entries
in the extended configuration file, the Apama components allow connections from either the
localhost (127.0.0.1) or IP addresseswhere the first 17 bitsmatch the first 17 bits of 192.168.128.0.
The Apama components do not accept connections from any other IP addresses.

If you specify an extended configuration file when you start the correlator, and if there are any
AllowClient entries in the extended configuration file, then the Apama components do not allow
connections from any IP address that does not fall within one of the AllowClient ranges specified.
If you do not specify an extended configuration file when you start the correlator, or there are no
AllowClient entries in an extended configuration file that you do specify, the Apama components
accept connections from any client.

Important:
This feature is intended to preventmistakenly connecting to thewrong server. It is not intended
to prevent malicious intruders since it provides no protection against address spoofing.

Setting environment variables for Apama components

You can use the extended configuration file to set environment variables. Put environment variable
declarations in the [Environment] section. For example:

334 Connecting Apama Applications to External Components 10.11.3

14 Using the IAF

[Environment]
MY_ENV_VAR=myvalue

If you specify an extended configuration file when you start the correlator, and if there are any
environment variable entries in the extended configuration file, then the Apama components use
those environment variable settings. If you do not specify an extended configuration file when
you start the correlator, or there are no environment variable entries in an extended configuration
file that you do specify, the Apama components use the environment variable settings specified
elsewhere.

Note:
You cannot use this feature to set variables such as LD_PRELOAD and LD_LIBRARY_PATH because
UNIX dictates that they are set before the affected process starts execution. These environment
variables should therefore be considered read-only.

Sample extended configuration file

Save the extended configuration file as a text file. Blank lines are ignored. For example, the contents
of ApamaExtendedConfig.txtmight be as follows:
[Server]
BindAddress=127.0.0.1:15903
BindAddress=10.0.0.1
AllowClient=127.0.0.1
AllowClient=10.0.0.0/24
[Environment]
LD_LIBRARY_PATH=/usr/local/mydir

IAF Management – Managing a running adapter I
The iaf_management tool is provided for performing generic component management operations
on a running adapter. It can be used to shut down a running adapter, request the process ID of a
running adapter, or check that an adapter process is running and acknowledging communications.
The executable for this tool is located in the bin directory of the Apama installation. Any output
information is displayed on stdout.

See also “IAF Client – Managing a running adapter II” on page 336 for IAF-specific management
information, as opposed to this generic component management tool.

Synopsis

To manage a running adapter, run the following command:
iaf_management [options]

When you run this command with the –h option, the usage message for this command is shown.

Description

For historical reasons, iaf_management does the same as engine_management. The only difference
in behavior is that iaf_management defaults to the default IAF port (16903).

Connecting Apama Applications to External Components 10.11.3 335

14 Using the IAF

For detailed descriptions of all options and exit values, see "Shutting down and managing
components" in Deploying and Managing Apama Applications.

IAF Client – Managing a running adapter II
The iaf_client tool is provided for performing IAF-specificmanagement operations on a running
adapter. It can be used to stop a running adapter, to temporarily pause sending of events from an
adapter into the correlator, and to request an adapter to dynamically reload its configuration. The
executable for this tool is located in the bin directory of the Apama installation.

Synopsis

To manage a running adapter, run the following command:
iaf_client [options]

When you run this command with the –h option, the usage message for this command is shown.

Description

If the adapter is listening for control connections on a non-standard port (specifiedwith the -–port
option to the iaf executable), you must pass the same port number to the iaf_client tool.

When the IAF is started, it loads all the transport and codec plug-ins defined in its configuration
file, and initializes them with any plug-in-specific properties provided.

You can use the --reload option to dynamically reconfigure a running adapter from a changed
configuration file without restarting the IAF. When this option is used, the IAF will:

Pass the current set of <property> names and values in the configuration file to each loaded
transport and codec layer plug-in.

Note:
Although plug-in authors will support dynamic reconfiguration of properties wherever
possible, it is important to be aware that there may be some properties that by the nature
cannot be changed while the adapter is still running. These should be detailed in the
documentation for the transport or codec plug-in. Some transport and codec plug-ins may
not support configuration file reloading at all. This should be documented by the specific
plug-ins.

Load and initialize any new transport and codec layer plug-ins that have been listed in the
<transports> and <codecs> sections of the configuration file.

Unload any transport and codec layer plug-ins that are no longer listed in the <transports>
and <codecs> sections of the configuration file.

Changing the name of a running plug-in and performing a reload is equivalent to unloading the
plug-in and then loading it again. It is important to realize that this will result in any runtime state
stored in memory by the plug-in being lost.

336 Connecting Apama Applications to External Components 10.11.3

14 Using the IAF

Note:
It is not possible to dynamically change a loaded plug-in's C/C++ library filename or Java
className, nor to change a C/C++ plug-in into a Java one (or vice-versa).

If an adapter is reconfigured to use a different log file and the IAF cannot write to the new log file
when reloaded, the IAF uses the log file the adapter was using before reconfiguring. If the IAF
cannot use the original log file, it writes to stderr.

Options

The iaf_client tool takes the following options:

DescriptionOption

Displays usage information.-h | --help

Name of the host towhich youwant to connect. Non-ASCII
characters are not allowed in host names.

-n host | --hostname host

Port on which the IAF is listening.-p port | --port port

Instructs the IAF to reload its configuration file.-r | --reload

Instructs the IAF to suspend the sending of events to the
correlator (not to the external transport).

-s | --suspend

Instructs the IAF to resume the sending of events to the
correlator (not to the external transport).

-t | --resume

Instructs the IAF to shut down.-q | --quit

Requests verbose output during execution.-v | --verbose

Displays version information for the iaf_client tool.-V | --version

IAF Watch – Monitoring running adapter status
The iaf_watch tool allows you to monitor the live status of a running adapter. The executable for
this tool is located in the bin directory of the Apama installation.

Synopsis

To monitor the status of a running adapter, run the following command:
iaf_watch [options]

When you run this command with the –h option, the usage message for this command is shown.

Connecting Apama Applications to External Components 10.11.3 337

14 Using the IAF

Description

If the adapter is listening for control connections on a non-standard port (specifiedwith the -–port
option to the iaf executable), you must pass the same port number to the iaf_watch tool.

By default, the tool collects status information from the adapter once per second and displays this
in a human-readable form.

Options

The iaf_watch tool takes the following options:

DescriptionOption

Displays usage information.-h | --help

Name of the host towhich youwant to connect. Non-ASCII
characters are not allowed in host names.

-n host | --hostname host

Port on which the IAF is listening.-p port | --port port

Specifies the poll interval in milliseconds.-i ms | --interval ms

Writes status information to the named file. The default is
to send status information to stdout .

-f file | --filename file

Indicates that you want raw output format, which is more
suitable for machine parsing. Raw output format consists

-r | --raw

of a single line for each status message. Each line is a
comma-separated list of status numbers. This format can
be useful in a test environment.

If you do not specify that you want raw output format, the
default is a multi-line, human-readable format for each
status message.

If you also specify the --raw option, you can specify the
--title option so that the output contains headers that
make it easy to identify the columns.

-t | --title

Outputs one set of status information and then quits. The
default is to indefinitely return status information at the
specified poll interval.

-o | --once

Displays process names and versions in addition to status
information. The default is to display only status
information.

-v | --verbose

Writes the output in UTF-8 encoding.-u | --utf8

Displays version information for the iaf_client tool.-V | --version

338 Connecting Apama Applications to External Components 10.11.3

14 Using the IAF

The IAF configuration file
An IAF configuration file is an essential part of any adapter generated with the IAF.

The configuration file must be formatted in XML, and the Document Type Definition (DTD) for
it is iaf_4_0.dtd, which is located in the etc directory of your installation. You may wish to use
this DTD in conjunction with your XML editor to assist you in writing a correctly formatted
configuration file.

The configuration file is loaded and processedwhen the adapter process starts. A running adapter
can by signaled to reload and reprocess the configuration file at any time, by running the iaf_client
tool with the –r or --reload option.

On UNIX platforms a SIGHUP signal sent to the IAF process re-opens the log file.

The root element in the configuration file is <adapter-config>. Thismust always be defined.Within
it a single instance of the following elements must exist:

<transports> - This element defines the transport layer plug-in(s) to be loaded.

<codecs> - Defines the codec layer plug-in(s) to be loaded.

<mapping> - Defines the mapping rules for the Semantic Mapper layer, which are used in the
conversion between codec layer normalized messages and correlator events.

Following those elements, there must be at least one of the following elements. It is also possible
to specify one of each of these elements:

<apama> - Defines how the IAF connects to the Apama correlator(s).

<universal-messaging> - Defines how the IAF connects to Software AG's UniversalMessaging
message bus.

Note:
Use of Universal Messaging from the IAF is deprecated and will be removed in a future
release.

There are also three optional elements that can appear before these required elements (in order):

<logging> - Defines the log file and logging level used by the IAF.

<plugin-logging> - Defines the log file and logging level used by the transport and codec layer
plug-ins.

<java> - Defines the environment of the embedded Java Virtual Machine (JVM) in which any
Java codec and transport plug-ins will run.

Each of these elements is discussed in more detail in the following sections.

Connecting Apama Applications to External Components 10.11.3 339

14 Using the IAF

Including other files
The adapter configuration file supports the XML XInclude extension so you can reference other
files from the configuration file. Thismakes it possible, for example, to keep the transport properties
in one file and the mapping properties in another. For more information on XML Inclusions, see
https://www.w3.org/TR/xinclude/. The standard adapters packaged with the Apama installation
use this scheme. For example, the Apama ODBC adapter specifies its transport properties in the
adapters\config\ODBC.xml.dist file and its mapping properties in the adapters\config\ODBC-
static.xml. For more information on the standard Apama adapters, see “The File IAF Adapter
(JMultiFileTransport)” on page 483.

In order to match the DTD, the xmlns:xi attribute must be placed either on the <adapter-config>
element (as the name xmlns:xi) or on the <xi:include> element. Apama strongly recommends
that you use only relative filenames instead of URLs to remote servers.

For example:
<adapter-config xmlns:xi="http://www.w3.org/2001/XInclude">
<transports>

<transport name="testmarket1" library="protocol-transport">
<property name="host" value="localhost"/>
<property name="port" value="12000"/>

</transport>
</transports>
<xi:include href="market-static.xml"

xpointer="xpointer(/static/codecs)"/>
<xi:include href="market-static.xml"

xpointer="xpointer(/static/mapping)"/>

Transport and codec plug-in configuration
The adapter configuration file requires both a <transports> and a <codecs> element.

The <transports> element defines the transport layer plug-in(s) to be loaded, and contains one or
more nested <transport> elements, one for each plug-in.

The syntax of the <codecs> element mirrors the <transports> element precisely, and contains one
or more nested <codec> elements, each of which defines a codec layer plug-in to be loaded.

The <transport> and <codec> elements

The transport or codec layer plug-in that should be loaded is defined by the attributes of the
<transport> or <codec> elements:

To load a C or C++ plug-in, there must be a library attribute, whose value is the filename of
the library in which the plug-in is implemented. The extension and library name prefix will
be deduced automatically based on the platform the IAF is running on. For example, on
Windows library="FileTransport"would reference a file called FileTransport.dll; on a
UNIX system the library filename would be libFileTransport.so.

To load a Java plug-in, instead provide a className attribute, whose value is the fully qualified
name of the Java class that implements the plug-in.

340 Connecting Apama Applications to External Components 10.11.3

14 Using the IAF

https://www.w3.org/TR/xinclude/

If the optional jarName attribute is also provided, the plug-in class will be loaded from the Java
archive (.jar) that it specifies; otherwise the IAF will use the usual classpath searching
mechanism to locate the class. See “Java configuration (optional)” on page 363 for more
information about setting a classpath for use with the IAF.

All <transport> and <codec> elementsmust also have a name attribute. The name is an arbitrary
string used to reference the plug-inwithin the IAF, andmust be uniquewithin the configuration
file. Even if the same plug-in was to be loaded more than once inside the same IAF, the
corresponding <transport> or <codec> elements would still need to have different names.

The <transport> and <codec> elements can include an optional recordTimestamps attribute.
This attribute supports the latency framework feature. The value of the attribute determines
the values of the recordUpstream and recordDownstreammembers of the IAF_TimestampConfig
object (C/C++ plug-ins) or TimestampConfig object (Java plug-ins) object passed to the semantic
mapper. The attribute takes one of the following values:

none—Do not record any timestamps

upstream—Record timestamps for upstream events only

downstream—Record timestamps for downstream events only

both—Record timestamps for both upstream and downstream events

The default, if the recordTimestamps attribute is not present, is none.

The <transport> and <codec> elements can include an optional logTimestamps attribute. This
attribute supports the latency framework feature. The attribute takes a space- or
comma-separated list of keywords for its value. Supported keywords are:

upstream— Log latency for upstream events

downstream— Log latency for downstream events

roundtrip— Log roundtrip latency for all events, in a plug-in-specific way

logLevel— Set the logging level for timestamp logging. Any of the standard Apama log
levels are accepted for this keyword.

The value of this attribute determines the values of the logUpstream, logDownstream,
logRoundtrip and logLevelmembers of the IAF_TimestampConfig object (C/C++ plug-ins) or
TimestampConfig object (Java plug-ins) passed to the semantic mapper. If the logTimestamps
attribute is not present, the log level defaults to INFO and the other timestamp logging
parameters default to false.

Note:
AlthoughC/C++ and Java transport and codec layer plug-insmay coexist in the same IAF, using
a C/C++ codec plug-in with a Java transport plug-in or vice-versa is not permitted.

Plug-in <property> elements

<transport> and <codec> elements may also contain any number of <property> elements, which
are the mechanism by which plug-in-specific options are configured.

Connecting Apama Applications to External Components 10.11.3 341

14 Using the IAF

Each <property> element has two attributes: name and value. The syntax of the name and value is
entirely determined by the plug-in author. Typically the name, value pairs are not ordered, and
there is no constraint on the uniqueness of the names. Most plug-ins treat the name attribute in a
case-sensitive manner.

Inmost (though not all) cases, plug-in authors allowproperties to be changed dynamicallywithout
restarting the IAF, by using the IAF Client tool to request a reload of properties from the IAF
configuration file. See “IAF Management – Managing a running adapter I” on page 335 for more
information about using the IAF Client.

Example

The transport/codec definition section of an IAF configuration file might look as follows for a
C/C++ transport plug-in implemented on Windows by FileTransport.dllwith a codec in
StringCodec.dll:
...
<transports>
<transport name="File" library="FileTransport">

<!-- Transport-specific configuration property -->
<property name="input" value="simple-feed.evt"/>
<property name="output" value="output.evt"/>

</transport>
</transports>
<codecs>
<codec name="String" library="StringCodec">

<!-- Codec-specific configuration property -->
<property name="NameValueSeparator" value="="/>
<property name="FieldSeparator" value=", "/>
<property name="Terminator" value=";"/>

</codec>
</codecs>
...

Similarly the configuration section for the equivalent Java plug-ins, both packaged inside
FileAdapter.jar, would be:
...
<transports>
<transport
name="File"
jarName="JFileAdapter.jar"
className="com.apama.iaf.transport.file.JFileTransport"

>
<!-- Transport-specific configuration property -->
<property name="input" value="simple-feed.evt"/>
<property name="output" value="output.evt"/>

</transport>
</transports>
<codecs>
<codec
name="String"
jarName="JFileAdapter.jar"
className="com.apama.iaf.codec.string.JStringCodec"

>
<!-- Codec-specific configuration property -->
<property name="NameValueSeparator" value="="/>

342 Connecting Apama Applications to External Components 10.11.3

14 Using the IAF

<property name="FieldSeparator" value=", "/>
<property name="Terminator" value=";"/>

</codec>
</codecs>
...

You are advised to peruse the iaf_4_0.dtd file as it represents the complete syntactic reference to
the correct structure of the configuration file.

The topic “Event mappings configuration” on page 343 describes the semantic translation and
transformation rules. “IAF samples” on page 364 illustrates an example configuration file.

Event mappings configuration
The adapter configuration file requires a <mapping> element, which configures the adapter's
Semantic Mapper layer.

The <mapping> element may contain the following optional attributes to support the latency
framework:

An optional recordTimestamps attribute. The value of the attribute determines the values of
the recordUpstream and recordDownstreammembers of the IAF_TimestampConfig object (C/C++
plug-ins) or TimestampConfig object (Java plug-ins) object passed to the transport or codec. The
attribute takes one of the following values:

none—Do not record any timestamps

upstream—Record timestamps for upstream events only

downstream—Record timestamps for downstream events only

both—Record timestamps for both upstream and downstream events

The default, if the recordTimestamps attribute is not present, is none.

An optional logTimestamps attribute. This attribute takes a space- or comma-separated list of
keywords for its value. Supported keywords are:

upstream— Log latency for upstream events

downstream— Log latency for downstream events

roundtrip— Log roundtrip latency for all events

log level— Set the logging level for timestamp logging. Any of the standard Apama log
levels are accepted for this keyword.

The value of this attribute determines the values of the logUpstream, logDownstream,
logRoundtrip and logLevelmembers of the IAF_TimestampConfig object (C/C++ plug-ins) or
TimestampConfig object (Java plug-ins) passed to the transport or codec. If the logTimestamps
attribute is not present, the log level defaults to INFO and the other timestamp logging
parameters default to false.

The <mapping> element may contain the following (in order):

Connecting Apama Applications to External Components 10.11.3 343

14 Using the IAF

An optional <logUnmappedDownstream> element, which specifies a file to which unmapped
downstream messages should be logged.

Anoptional <logUnmappedUpstream> element,which specifies afile towhichunmappedupstream
Apama events should be logged.

One ormore <event> elements, specifying themapping between Apama correlator events and
external messages. Setting up the correct <event> elements is the main part of configuring the
Semantic Mapper.

One ormore <unmapped> elements, which specify events thatwill bypass the SemanticMapper,
using a string representation of the entire Apama event.

Note:
The order in which <event> and <unmapped> elements appear can be mixed.

Each of these will be discussed in more detail below, after a brief explanation of the operation of
the Semantic Mapper.

Semantic Mapper operation

The IAF SemanticMapper takes as input a set of rules that specifywhen and how anApama event
can be generated from an external message, and similarly how suitable messages of the correct
external format should be constructed from Apama events. These rules are termed an event
mapping.

All Apama events must belong to a named event type that defines their structure. On startup, the
IAF will parse each <event> element, derive the structure of the event being described, and
optionally inject an EPL event definition for it into the correlator. The eventmappings are therefore
organized by Apama event type, as <event> elements.

When an external message is received from a codec plug-in, the Semantic Mapper will run it past
each event mapping sequentially, in the order provided in the configuration file. First it checks
whether it matches a set of conditions specified within that mapping. If it does, it proceeds to
transform and translate it according to the mapping rules provided. If it does not match the
conditions, the Semantic Mapper will move on to the next event mapping. If the message matches
against several <event>mappings, only the first mapping is executed unless the breakDownstream
attribute is set to false. When this attribute is set to false, all mappings that match are executed.

In the upstream direction, when the Semantic Mapper receives an Apama event, it will already
know the type of the event, because this information is part of each event sent out by the correlator.
However, it is possible to specify multiple upstreammappings from the same Apama event type;
therefore, just as with downstream mappings, the Semantic Mapper will check the incoming
Apama event against the conditions defined in each of the mappings for that event type. Just as
for downstream mappings, the first matching mapping will be used, unless the breakUpstream
attribute is set to false. When this attribute is set to false, all mappings that match are executed.

In both directions it is possible for an incoming event not to match against any event mapping,
and in which case no mapping is executed. The <logUnmappedDownstream> and
<logUnmappedUpstream> elements allow such messages and events to be logged.

344 Connecting Apama Applications to External Components 10.11.3

14 Using the IAF

The <logUnmappedDownstream> and <logUnmappedUpstream> elements

These optional elements enable the logging of Apama events and codec messages that were not
matched by any of the configured mapping rules, before they are discarded by the adapter. This
can be useful for debugging and diagnostics.

The <logUnmappedDownstream> element turns on logging ofmessages from an external event source
that were not mapped onto an Apama correlator event, after being received from a codec plug-in;
the <logUnmappedUpstream> element enables logging of events from the correlator that did not
match the conditions necessary for mapping to an external message that could be passed on to a
codec plug-in.

Both elements have a single attribute called file, which is used to specify the filename that the
log should be written to.

For example:
<mapping>
...
<logUnmappedDownstream file="unmapped_from_adapter.log"/>
<logUnmappedUpstream file="unmapped_from_Correlator.log"/>
...

</mapping>

Note:
Due to buffering of files in the operating system, the contents of the log files on disk may not
be complete until the IAF is shutdown or reconfigured.

The <event> element

The <mapping> section contains one or more <event> elements, each of which specifies a mapping
between an Apama correlator event type and a kind of external message. Setting up the correct
<event> elements is the main part of configuring the Semantic Mapper.

Each <event> element can have the following attributes:

name – This is the name of this Apama correlator event type, and is required.

package – This optional attribute specifies the EPL package of the Apama event; if it is not
provided, the default package is used. SeeDevelopingApamaApplications for information about
packages.

direction – This optional attribute defines whether this event mapping is to be used solely
for downstream mapping (from incoming external messages to Apama events), upstream
mapping (from Apama events to outgoing messages) or for mapping in both directions. The
allowed values for the attribute are upstream, downstream and both. The default value if the
attribute is undefined is both.

encoder – Required for a mapping that can be used in the upstream direction (direction
="upstream" or "both"), but ignored when processing downstreammessages. In the upstream
direction the attribute specifies the codec plug-in that should be used to process the message,

Connecting Apama Applications to External Components 10.11.3 345

14 Using the IAF

once the translation process is complete. The name supplied heremustmatch the nameprovided
in the <codec> element.

copyUnmappedToDictionaryPayload – This optional Boolean attribute defineswhat the Semantic
Mapper should do with any fields in the incoming messages that do not match with any field
mapping. If copyUnmappedToDictionaryPayload is false, then anyunmappedfields are discarded.
If it is set to true however, theywill be packaged into a special field called __payload, implicitly
added as the last field of the Apama event type. Fields in normalized events with a value of
null will be included in the dictionary with the value set to an empty string. If this attribute is
undefined its value defaults to false.

Using copyUnmappedToDictionaryPayloadputs all the payloadfields in a standardEPLdictionary
that is efficient and easy to access. See “The Event Payload” on page 429 for more information
about the payload field.

breakUpstream – This optional Boolean attribute defines what the Semantic Mapper should do
when it matches an upstream Apama event to an event mapping.

When set to true, the semantic mapper stops the evaluating process and begins executing the
actions specified by that mapping and then goes on to evaluate the next event. This is the
default behavior when the breakUpstream attribute is not specified.

When set to false, the semantic mapper executes the actions specified in the mapping and
then keeps evaluating the same event against the other event mappings.

This attribute only affects upstream event processing.

breakDownstream – This optional Boolean attribute defines what the Semantic Mapper should
do when it matches an incoming downstream message to an event mapping.

When set to true, the semantic mapper stops the evaluating process and begins executing the
actions specified by that mapping and then goes on to evaluate the next message. This is the
default behavior, when the breakDownstream attribute is not specified.

When set to false, the semantic mapper executes the actions specified in the mapping and
then keeps evaluating the same message against the other event mappings.

This attribute only affects downstream event processing.

inject – Determines whether the IAF will automatically inject the event definitions that are
implicitly defined by this event mapping into the correlator. The default is false. Injecting
events from the configuration files is deprecated. Instead, you should use the -e or --events
option of the iaf executable to generate the EPL code for the event definitions and then inject
the events (and monitors) during the application's start-up sequence with the tool that you
use to start the correlator, such as Software AG Designer or the Apama command-line tools.

copyTimestamps – This is an optional attribute. If set to true (the default is false), the semantic
mapper will add an additional field to the generated event definition to hold timestamp
information. The new field will be called __timestamps and will be of type
dictionary<integer,float>where the dictionary keys are timestamp indexes and the values
are the corresponding timestamps. The timestamp field is inserted before the payload field,
so it may be the last or next to last field in the event definition. If timestamp copying is enabled
for an event type, all timestamps present in the __timestamps field of a matching upstream

346 Connecting Apama Applications to External Components 10.11.3

14 Using the IAF

eventwill be copied into a new AP_TimestampSet/TimestampSet object andpassed to the upstream
codec. Likewise, any timestamps passed to the semantic mapper by the codec will be copied
into the __timstamps field of the outgoing downstream event and thus made available to the
correlator.

transportChannel – optional. If present, then for upstream events (events leaving the correlator),
the channel is put in the NormalisedEvent using the value of the transportChannel attribute.

If present, then for downstream events (events going into the correlator), if the value of the
transportChannel attribute is in the NormalizedEvent, then that value from the NormalizedEvent
is used as the channel name. It is possible that a subsequent <map> element with an identical
transport attribute value could override it.

presetChannel – optional. If present, then for downstream events (events going into the
correlator), if no channel has been set by the transportChannel attribute, then the value of
presetChannel is used as the channel name.

If transportChannel is set, then that value in the NormalisedEvent can still be used for a normal
<map> rule, but it will not appear in the unmappedDictionary (if present).

Thus, it is possible to define either a default channel name per type, or a NormalisedEvent field
that the transport will send and receive, and this could be re-using a NormalisedEvent field
used by a <map> element.

A typical bidirectional <event> elementmight look like the following. For downstream, if "CHANNEL"
(from transportChannel) is in the NormalisedEvent, then the value of the "CHANNEL" entry is used
as the channel name, otherwise "channelB" from presetChannel is used. For upstream, the channel
name is placed in the "CHANNEL" entry in the NormalisedEvent.
<event name="Tick"

direction="both"
encoder="String"
copyUnmappedToDictionaryPayload="true"
inject="false"
presetChannel="channelB"
transportChannel="CHANNEL">

<id-rules>
...

</id-rules>
<mapping-rules>

...
</mapping-rules>

</event>

The <id-rules> and <mapping-rules> elements are described below.

The <event> mapping conditions

The <id-rules> element defines a set of conditions that must be satisfied by an incomingmessage
for it to trigger the mapping to an Apama event, or to decide how to map an incoming Apama
event back to a normalizedmessage. The <id-rules> element contains <upstream> and <downstream>
sub-elements, which in turn contain themapping conditions to be usedwhen the SemanticMapper
is searching for a mapping to use in the upstream or downstream direction, respectively. Each
condition is encoded in an <id> element.

Connecting Apama Applications to External Components 10.11.3 347

14 Using the IAF

Note:
Conditions are only required for the directions that the mapping can operate in. For example,
amappingwith direction="downstream"does not need any <upstream> id rules,while amapping
with direction="both"must specify both <upstream> and <downstream> id rules. The <id-rules>,
<upstream> and <downstream> elements themselves must exist though.

<id> - Each <id> sets a condition on a set of fields contained in the normalized message or Apama
event. This element takes up to three attributes; fields, which defines the fields that the condition
must apply to; test, which specifies the condition; and value, which provides a value to compare
the field value with. The value attribute is only required for relational tests. For example:
<id fields="Stock, Exchange, Price" test="exists"/>

specifies that the Stock, Exchange and Price fields must exist if the condition is to be satisfied and
the mapping proceed. No value is needed to perform the test in this case.

However, the following example:
<id fields="Exchange" test="==" value="LSE"/>

specifies that the Exchange fieldmust exist and have the value "LSE" for the condition to be satisfied.

Note:
The value for the fields attribute is a list of fields, delimited by spaces or commas. This means,
for example that <id fields="Exchange EX,foo" test="==" value="LSE"/>will successfully
match a field called "Exchange", "EX" or "foo", but not a field called "Exchange EX,foo". You
should keep this in mindwhen you assign field names for normalized events. While fields with
spaces or commas in their names may be included in a payload dictionary in upstream or
downstream directions, they cannot be referenced directly in mapping or id rules.

The following test conditions may be specified. The first four tests are unary operators that do not
need a value attribute. These tests can be applied to multiple fields in the same <id> rule:

exists - The fields exist, but do not necessarily have a value

notExists - The fields do not exist

anyExists - One or more of the fields exist, not necessarily with values

hasValue - At least one of the fields exists and has a value. To test that multiple fields all exist
and all have values, use multiple hasValue conditions, one for each field, such as
<id fields="symbol" test="hasValue"/>
<id fields="newLimit" test="hasValue"/>

The remaining tests are binary relational operators that do require a value attribute. Furthermore,
these tests can only be applied to single fields:

== - Case-sensitive string equality

!= - Case-sensitive string inequality

~== - Case-insensitive string equality

348 Connecting Apama Applications to External Components 10.11.3

14 Using the IAF

~!= - Case-insensitive string inequality

While the equality tests will fail on fields with missing values, the inequality tests will pass.

All <id> conditions in an <id-rules> element must be satisfied for the mapping to proceed.

Note:
A mapping with no <id> elements will always match. This allows a catch-all mapping to be
specified. This should be the last definition.

The id rules that test transport field values function in isolation from each other, that is, as soon
as a test id rule fails, the mapper stops looking at subsequent rules. This means there is no way
to group together tests against the same field name with an OR condition to see if any of them
match. Any type of OR value testing needs to be implemented at the codec or EPL layers, or by
creating copies of the entire <event> element for each value to test.

The following is an example of a valid <id-rules> element for a bidirectional mapping. Note that
the upstream rules are empty, so this mapping will match any incoming Apama event of the
appropriate type:
<id-rules>
<downstream>
<id fields="Stock, Price" test="exists"/>
<id fields="Exchange" test="==" value="LSE"/>
</downstream>
<upstream/>

</id-rules>

The <event> mapping rules

The <mapping-rules> element defines a set of mappings that describe how to create an Apama
event from an incoming message. Conversely they define the mapping from an Apama event to
an outgoingmessage. Eachmappingmust be defined in a <map> element, which has the following
attributes:

apama – This is the Apama event field name to copy the value into (downstream) or to take the
value from (upstream). This attribute is optional. In an upstreamdirection, if the apama attribute
is not specified or is provided empty, a field will be created within the external message and
set to the value specified by default. Not specifying the apama attribute has no significance in
a downstream direction — this line of the mapping will be ignored.

Note:
The IAF does not know what types are injected into the correlator, and will drop events
with a Failed to parsewarning if the types and order of the elementswith an apama= attribute
do not match the event definition that was injected into the correlator. Mapping rules that
do not specify an apama= attribute are not affected by this.

transport – This defines the externalmessage's field name to copy the value from (downstream)
or to copy the value into (upstream). For a downstream mapping it is possible to define more
than one value here; in which case the first encountered is used. This attribute is optional. In
a downstream direction, if the transport attribute is not specified or is provided empty, a field
will be createdwithin theApama event and set to the value specified by default. Not specifying

Connecting Apama Applications to External Components 10.11.3 349

14 Using the IAF

the transport attribute has no significance in an upstream direction— this line of the mapping
will be ignored.

type – The type of the field in the Apama event type. Any simple correlator type is valid here
(string, integer, decimal, float, boolean and location); for complex correlator reference types
such as sequence<...> and dictionary<...,...>, specify reference instead. If a field is of
reference type, the referenceType attribute can be supplied if needed to define the type (see
below). When a field is of reference type, the Semantic Checker passes its string form to and
from the codec untouched, and performs no checking upon the validity of the value. Note that
fields in the external message are always un-typed character strings, regardless of any type
they may have had on the external transport that produced them. Furthermore, the Semantic
Mapper does not perform any type "casting" or "coercion" when converting a character string
in an external event field to the appropriate Apama type, meaning that the Apama event
produced might be invalid and be rejected by the correlator. Conversions in the upstream
direction, from the Apama field to a string in the external event, will always succeed. Codec
and transport plug-ins should be aware of these rules when working with events that will be,
or have been, processed by the Semantic Mapper.

referenceType – This is an optional attribute, but it must be supplied if the attribute
type="reference" and the event ofwhich this field is amember has the attribute inject="true"
(which is now deprecated) or if the IAF will be run with the -e option in order to generate a
EPL file with event definitions. This EPL file is then injected to the correlator (this is the
recommendedmethod of injecting events). The value of this attributemust be a valid correlator
type. This attribute is only used for the process of constructing the event definitions that are
to be injected into a correlator. Note that since this is an XML attribute value, some characters
such as angle brackets or quotation marks must be correctly encoded using their XML entity
name. For example, a sequence<string>must be written as referenceType="sequence
<string>". Note also that when nesting sequences within sequences, a space must be
present between the angle brackets to prevent the correlator from parsing this as a bitwise
shift.

default – The default value to set the Apama field to if the external field specified in transport
is missing. Note that the value provided must be of the type specified in type. For example, a
valid string is test or "", a valid integer is 0, a valid decimal is 0.0 or 0.0d, a valid float is 0.0,
a valid boolean is true or false, and a valid location is (0.0, 0.0, 0.0, 0.0).

defaultIfEmpty – Optionally, sets the default value to assign to the field in the Apama event
if the external field specified in transport is present but has no value defined. The same type
considerations apply as for the default attribute. If this attribute is not defined the value
specified by the default attribute will apply for this condition as well. Bearing in mind angled
brackets and quotes have to be written as XML entities (see above), for a nested event you
need to write default="InnerEvent("")" if you want the default value to be
InnerEvent("").

Note that at least one of apama and transportmust be specified in a mapping.

The following is an example of a valid <mapping-rules> element:
<mapping-rules>
<map apama="stockName" transport="Stock" type="string" default=""/>
<map apama="stockPrice" transport="Price" type="float" default="0.0"/>
<map apama="stockVolume" transport="Volume, TradingVolume,

350 Connecting Apama Applications to External Components 10.11.3

14 Using the IAF

CombinedVolume" type="float" default="0.0"/>
</mapping-rules>

In a downstream direction, this specifies that the Stock field must be copied over into stockName,
Pricemust be copied into stockPrice, and the first encountered of Volume, TradingVolume or
CombinedVolumemust be copied into stockVolume. First encountered means the first such instance
when the event is parsed left to right.

In an upstream direction, the Apama field values would be copied into external message fields of
the names specified. A given field in an upstreammessage can be generated from several different
sources. These are evaluated in the following order:

1. A <map> rule mapping from a named Apama event field to the transport field.

2. A value for the transport field in the event payload. See “The Event Payload” on page 429 for
more details on using the event payload.

3. Any default value available from a <map> rule with no corresponding Apama event field.

You may have noticed that while an Apama event must always have its full complement of fields
defined and with type-valid values, the same is not assumed of external events.

Note:
If multiple upstream mappings for the same Apama type exist, they must all specify all of the
fields in the type in the same order, with the same type values.

Tips for writing a codec when using reference types:

A codec is responsible for constructing the string form of any value. This means that if your
event contains a sequence<string> then the codec must generate an entry in the normalized
event whose value is of the form:
["string value 1", "string value 2", "Value with a \" and backslash \\"]

If the codec generates an event that the correlator cannot parse, the correlator will drop the
event and the codec will have no way of knowing. Be careful constructing the event strings.

Similarly, events from the correlator will contain a normalized event entry whose value is the
string from of the field's value, as in the example above. The codec is responsible for parsing
these strings.

When writing adapters in Java, Apama suggests you use the classes in the
com.apama.event.parser package to parse and construct the strings to send to the Semantic
Mapper. If you are writing a C/C++ adapter, the corresponding functions for parsing and
constructing strings to send to the Semantic Mapper are found in the AP_EventParser.h and
AP_EventWriter.h header files.

For more information on the Java classes, see “Working with normalized events” on page 401
as well as the Apama Javadoc. For more information on the C/C++ functions, see “Codec
utilities” on page 381.

If nesting other events in the fields of an event, caution must be exercised regarding package
namespaces. Always use the fully qualified event namewhen referencing it in the string form.

Connecting Apama Applications to External Components 10.11.3 351

14 Using the IAF

Also always ensure that the correlator has the enclosed event type defined before the enclosing
event type.

The <unmapped> element

The <mapping> section may contain one or more <unmapped> elements, each of which specifies a
mapping between the string representation of an Apama event type and a normalized event.

Each <unmapped> element can have the following attributes:

name – This optional attribute specifies the name of the Apama correlator event type to match.
If omitted, matches all Apama event types.

package – This optional attribute specifies the EPL package of the Apama event. This attribute
can be specified only if the name attribute is also supplied.

transport – This attribute is required; it specifies the field in the NormalisedEvent to map to.

direction – This optional attribute defines whether this event mapping is to be used solely
for downstream mapping (from incoming external messages to Apama events), upstream
mapping (from Apama events to outgoing messages) or for mapping in both directions. The
allowed values for the attribute are upstream, downstream and both. The default value if the
attribute is undefined is both.

encoder – Required for a mapping that can be used in the upstream direction (direction
="upstream" or "both"), but ignored when processing downstreammessages. In the upstream
direction the attribute specifies the codec plug-in that should be used to process the message,
once the translation process is complete. The name supplied heremustmatch the nameprovided
in the <codec> element.

breakUpstream – This optional Boolean attribute defines what the Semantic Mapper should do
when it matches an upstream Apama event to an event mapping.

When set to true, the semantic mapper stops the evaluating process and begins executing the
actions specified by that mapping and then goes on to evaluate the next event. This is the
default behavior when the breakUpstream attribute is not specified.

When set to false, the semantic mapper executes the actions specified in the mapping and
then keeps evaluating the same event against the other event mappings.

This attribute only affects upstream event processing.

breakDownstream – This optional Boolean attribute defines what the Semantic Mapper should
do when it matches an incoming downstream message to an event mapping.

When set to true, the semantic mapper stops the evaluating process and begins executing the
actions specified by that mapping and then goes on to evaluate the next message. This is the
default behavior, when the breakDownstream attribute is not specified.

When set to false, the semantic mapper executes the actions specified in the mapping and
then keeps evaluating the same message against the other event mappings.

This attribute only affects downstream event processing.

352 Connecting Apama Applications to External Components 10.11.3

14 Using the IAF

transportChannel – optional. If present, then for upstream events (events leaving the correlator),
the channel is put in the NormalisedEvent using the value of the transportChannel attribute.

If present, then for downstream events (events going into the correlator), if the value of the
transportChannel attribute is in the NormalizedEvent, then that value from the NormalizedEvent
is used as the channel name. It is possible that a subsequent <map> element with an identical
transport attribute value could override it.

presetChannel – optional. If present, then for downstream events (events going into the
correlator), if no channel has been set by the transportChannel attribute, then the value of
presetChannel is used as the channel name.

If transportChannel is set, then that value in the NormalisedEvent can still be used for a normal
<map> rule, but it will not appear in the unmappedDictionary (if present).

Thus, it is possible to define either a default channel name per type, or a NormalisedEvent field
that the transport will send and receive, and this could be re-using a NormalisedEvent field
used by a <map> element.

In the following example, for downstream, if "CHANNEL" (from transportChannel) is in the
NormalisedEvent, then the value of the "CHANNEL" entry is used as the channel name, otherwise
"channelB" from presetChannel is used. For upstream, the channel name is placed in the "CHANNEL"
entry in the NormalisedEvent.
<unmapped

name="Unmapped"
direction="both"
package="com.apama.sample"
transport="Apama"
encoder="$CODEC$"
presetChannel="channelB"
transportChannel="CHANNEL">

<id-rules>
<downstream>

<id fields="Apama" test="exists"/>
</downstream>

</id-rules>
</unmapped>

The <unmapped> mapping conditions

An <unmapped> element must have an <id-rules> element that defines a set of conditions an
incoming must satisfy in order to trigger the mapping to an Apama event. If the value of the
direction attribute of an <unmapped> element is "both" or "downstream," the <id-rules> element
must contain a <downstream> sub-element. The <downstream> sub-element contains conditions to
be usedby the SemanticMapperwhen themessage ismovingdownstreamdirection. Each condition
is encoded in an <id> element.

Each <id> sets a condition on a set of fields contained in the normalizedmessage or Apama event.
This element takes up to three attributes; fields, which defines the fields that the condition must
apply to; test, which specifies the condition; and value, which provides a value to compare the
field value with. The value attribute is only required for relational tests.

Connecting Apama Applications to External Components 10.11.3 353

14 Using the IAF

The <unmapped> entries behave in the same way as <event> entries — the IAF processes <event>
and <unmapped> entries in order, translating events with any that match, and ending at the first
entry that has breakUpstream or breakDownstream set to true or not specified (they both default to
true).

Apama correlator configuration
The adapter configuration file requires an <apama> element, which configures how the IAF connects
to theApama correlator(s). An <apama> element can contain the following elements in the following
order:

<sinks>—This element lists theApama correlators that the IAF needs to connectwith in order
to inject EPL event type definitions and events. You can specify the following attribute in a
<sink> element:

parallelConnectionLimit—optional — The default behavior is that the IAF limits itself to an
internally set number of connections with each specified sink. This number scales according
to the number of CPUs that the IAF detects on the host that is running the IAF. While this
number is usually sufficient, there are some situations in which you might want to change it.
For example, if you are trying to conserve resources you might want to limit the number of
connections to 1, or if you want to prevent multiple threads from sharing a connection you
might allow a higher number of connections than the default allows. See the information below
about multiple connections from IAF to correlator.

Each correlator is defined in its own <sink> element:

<sink>—This element defines a correlator that the IAFmust send events to. You can define
more than one <sink> element. All sinks specifiedwill be injectedwith any EPL event type
definitions that are defined in <event> elements in the configuration file. The following
attributes are allowed in <sink> elements:

host—Required. Defines the name or address of the host machine where the correlator
is running.

port—Required. Specifies the port that this correlator can be contacted on.

sendEvents—Optional. The default behavior is that all sinks receive all events generated
by the Semantic Mapper. To prevent the Semantic Mapper from sending all events to a
particular correlator, add sendEvents="false" to the <sink> element that defines that
correlator. No events will be sent to that correlator regardless of any channel settings.

<sources>— This element lists the Apama components (usually correlators) from which the
IAF can receive events. Each component is defined in its own <source> element:

<source>—This element defines an Apama component that the IAF needs to register with
as an event consumer. This enables the IAF to receive any alerts generated by the specified
component. The following attributes are allowed in <source> elements:

host—Required. Defines the name or address of the host machine where the Apama
component is running.

port—Required. Specifies the port that this Apama component can be contacted on.

354 Connecting Apama Applications to External Components 10.11.3

14 Using the IAF

channels—Required. Specifies the channels that the IAF should listen on to receive events.
An empty string indicates that the IAF receives all generated events. To receive events on
only particular channels, specify a comma-separated list of channel names. Do not include
any spaces. For example, channels="UK,USA,GER".

disconnectable— Specifies whether or not the IAF can be disconnected if it is slow. If set
to yes or true (case insensitive), the IAF can be disconnected. Any other setting specifies
that it cannot be disconnected.

It is possible to define the IAF as having only sinks, or only sources, or both, or neither. If the IAF
has been started with no sinks and no sources, you would use the engine_connect tool to connect
it to a correlator or another IAF.

For complete information on engine_connect, see "Correlator pipelining" inDeploying andManaging
Apama Applications.

Disabling Apama messaging and using Universal Messaging instead

Note:
Use of Universal Messaging from the IAF is deprecated andwill be removed in a future release.
It is recommended that you now change any IAF-based adapter configurations using Universal
Messaging with a <universal-messaging> element in the configuration file to use an <apama>
element to talk directly to the correlator.

A deployed adapter can use Software AG's Universal Messaging message bus in place of
connections specified in the <apama> element. When youwant to use Universal Messaging instead
of explicitly set connections do the following:

Add a <universal-messaging> element in place of or after the <apama> element. See “Configuring
IAF adapters to use Universal Messaging” on page 356.

Add the enabled attribute to the <apama> element, if you have one, and set it to false. For
example:
<apama enabled="false">.....</apama>

Alternatively, you can remove the <apama> element.

When the enabled attribute is set to "false" then the entire <apama> element is ignored. In other
words, the deployed adapter does not use any connections specified in the <apama> element.
Instead, the deployed adapter uses the Universal Messaging configuration specified in the
<universal-messaging> element.

The default is that the enabled attribute is set to true. If the enabled attribute is not specified or if
it is set to true then the connections specified in the <apama> element are used.

While specifying both an <apama> element and a <universal-messaging> element in an adapter
configuration file is permitted, it is not recommended.

Connecting Apama Applications to External Components 10.11.3 355

14 Using the IAF

Multiple connections from IAF to correlator

To improve performance, an IAF transport might use multiple threads to send events to the codec
and thus to the Semantic Mapper. If more than one thread is sending events downstream (IAF to
correlator) then for each thread, the IAF creates a new connection to each <sink> defined in the
configuration file, up to the defined limit. Thus, multiple threads can deliver events in parallel to
the same sink. In combination with the channelTransport attribute on events (defined in <event>
elements), threads can deliver events to different channels to be received by different contexts.
For optimal parallel event delivery, each IAF transport thread should send events on a distinct
set of channels. There are no ordering guarantees when different threads deliver events to the
same sink.

There is a limit on how many connections to each sink the IAF can create. The IAF logs the limit
for the number of connections in the startup stanza. If events are sent on more threads than the
number of allowed connections, then the IAF re-uses existing connections,whichmeans that some
threads share connections. If a thread terminates, the connection it is using is not closed since it
might be in use by another thread. See the information above for the parallelConnectionLimit
attribute on the <sink> element.

Example

Following is an example of an <apama> element:
<adapter-config>
...

<apama>
<sinks parallelConnectionLimit="1">

<sink host="localhost" port="15903"/>
</sinks>
<sources>

<source host="localhost" port="15903" channels="MY_ADAPTER"/>
</sources>

</apama>
</adapter-config/>

Configuring IAF adapters to use Universal Messaging

Note:
Use of Universal Messaging from the IAF is deprecated andwill be removed in a future release.
It is recommended that you now change any IAF-based adapter configurations using Universal
Messaging with a <universal-messaging> element in the configuration file to use an <apama>
element to talk directly to the correlator. See “Apama correlator configuration” on page 354.

If you are configuring your Apama application to use Universal Messaging, you can configure an
IAF adapter to use the Universal Messaging message bus to send and receive events. To do this,
add a <universal-messaging> element to your adapter configuration file. A <universal-messaging>
element can replace or follow the <apama> element.

A <universal-messaging> element contains:

Required specification of the realms attribute or the um-properties attribute.

356 Connecting Apama Applications to External Components 10.11.3

14 Using the IAF

Required specification of the <subscriber> element.

Optional specification of the defaultChannel attribute.

Optional specification of the enabled attribute, which indicates whether the deployed adapter
uses the configuration specified in this <universal-messaging> element.

Specification of realms or um-properties attribute

Specification of the realms attribute or the um-properties attribute is required.

The realms attribute can be set to a list of Universal Messaging realm names (RNAME) to connect to.
You can use commas or semicolons as separators.

Commas indicate that you want the adapter to try to connect to the Universal Messaging realms
in the order inwhich you specify themhere. Semicolons indicate that the adapter can try to connect
to the specified Universal Messaging realms in any order.

If you specify more than one RNAME, each Universal Messaging realm you specify must belong to
the same Universal Messaging cluster. Specification of more than one Universal Messaging realm
lets you benefit from failover features. See theUniversalMessaging documentation for information
on Communication Protocols and RNAMEs.

The um-properties attribute can be set to the name or path of a file that contains Universal
Messaging configuration settings. See also “Defining Universal Messaging properties for the
IAF” on page 359.

Specification of subscriber element

Specification of the <subscriber> element is required. The <subscriber> element must specify the
channels attribute. Set the channels attribute to a string that specifies the names of the Universal
Messaging channels this adapter receives events from. Use a comma to separate multiple channel
names.

Specification of defaultChannel attribute

Specification of the defaultChannel attribute is optional. If specified, set the defaultChannel attribute
to the name of aUniversalMessaging channel. You cannot specify an empty string. In otherwords,
the value of the defaultChannel attribute cannot be the default Apama channel, which is the empty
string.

An adapter that uses Universal Messaging must send each event to a named channel. An adapter
that is configured to use Universal Messaging identifies the named channel to use as follows:

1. If the transportChannel attribute is set for an event type (in an <event> or <unmapped> element),
then this is the channel the adapter uses for that event type.

2. If the transportChannel attribute is not set for an event type but the presetChannel attribute
is set, then this is the channel the adapter uses for that event type.

3. If neither transportChannel nor presetChannel is set for an event type, then the adapter uses
the channel set by the defaultChannel attribute in the <universal-messaging> element.

Connecting Apama Applications to External Components 10.11.3 357

14 Using the IAF

https://documentation.softwareag.com/universal_messaging/

4. If neither transportChannel nor presetChannel is set and you did not explicitly set
defaultChannel and you used Software AG Designer to create the adapter configuration file,
then the defaultChannel attribute is set to "adapter_name adapter_instance_id. For example:
"File Adapter instance 3".

5. If none of transportChannel, presetChannel, or defaultChannel are set and if you did not use
Software AG Designer to create the adapter configuration file, then the adapter fails if it tries
to use Universal Messaging.

All events sent by the adapter on channels that are Universal Messaging channels are delivered
to those channels.

Specification of a value for the defaultChannel attribute affects events that are sent from this
adapter to Apama engine clients, and from this adapter to correlators when the adapter connects
to that correlator by means of the engine_connect correlator tool.

Specification of the enabled attribute

Optional specification of the enabled attribute, which indicateswhether the deployed adapter uses
the configuration specified in this <universal-messaging> element. The default is that the enabled
attribute is set to true. If the enabled attribute is not specified or if it is set to true, then the
configuration specified in the <universal-messaging> element is used.

If enabled is set to false, then the deployed adapter ignores the <universal-messaging> element
anddoes not useUniversalMessaging. The deployed adapter uses only its explicitly set connections.

Subscribing to receive events from an adapter that is using Universal Messaging

In each context, in any correlator, that is listening for events from an adapter that is usingUniversal
Messaging, at least one monitor instance must subscribe to the channel or channels on which
events are sent from the adapter. For example, if you are using anADBC adapter, youmust include
a monitor.subscribe(channelName) command for the corresponding instance of theADBCadapter.
Note that not all adapter service monitors support access from multiple correlators. If this is the
case, then only one correlator should run the service monitors for that adapter.

Adapter configuration examples

Following are some examples of <universal-messaging> elements:
<universal-messaging

realms="nsp://localhost:5629"
defaultChannel="orders"
enabled="true">

<subscriber channels="UK, US, GER"/>
</universal-messaging>

<universal-messaging um-properties="UM-config.properties">
<subscriber channels="signal,forward"/>

</universal-messaging>

358 Connecting Apama Applications to External Components 10.11.3

14 Using the IAF

Defining Universal Messaging properties for the IAF

Note:
Use of Universal Messaging from the IAF is deprecated andwill be removed in a future release.
It is recommended that you now change any IAF-based adapter configurations using Universal
Messaging with a <universal-messaging> element in the configuration file to use an <apama>
element to talk directly to the correlator. See “Apama correlator configuration” on page 354.

The IAF provides the UM-config.properties template file in the etc folder of your Apama
installation directory. The template is for a standard Java properties file. When you use Apama
in Software AG Designer to add Universal Messaging configuration to a project, Software AG
Designer copies the UM-config.properties file to the config folder in your project.

A Universal Messaging properties file for the IAF can contain entries for the following properties:

DescriptionProperty name

Specifies whether channel names are escaped
(true) or not (false). When set to false, the IAF

um.channels.escaped

passes channel names directly to Universal
Messaging without escaping. In addition, when
the slash (/) and backslash (\) characters are not
escaped, they can be used to create nested
channels.

CAUTION:
The IAF treats slash (/) and backslash (\) as
different characters while Universal
Messaging treats them as identical characters
(Universal Messaging generally changes a
backslash to a slash). You must choose to use
one of these characters in your application and
standardize on this. Use of both characters as
path separators will result in undefined
behavior.

When escaping is disabled (false), you must be
careful not to use characters which are not
supported by Universal Messaging (see the
UniversalMessagingdocumentation for themost
up to date list of supported characters and
character sets).

Default: true.

IndicateswhetherUniversalMessaging channels
can be dynamically created. Specify one of the
following:

um.channels.mode

Connecting Apama Applications to External Components 10.11.3 359

14 Using the IAF

DescriptionProperty name

autocreate

The IAF looks up only channels whose
names begin with the specified prefix. If the
channel does not exist, it is created. For
example, if the default prefix is used, channel
names must start with UM_ for the channel to
be a Universal Messaging channel.

mixed

The IAF looks up each channel to determine
if it is a Universal Messaging channel. If the
channel does not exist, it is created only if it
has the prefix specified by the
um.channels.prefix property.

precreate

Requires Universal Messaging channels to
be created by using Universal Messaging
EnterpriseManager or UniversalMessaging
client APIs. The IAF looks up all channels
(except the default "" channel) to determine
whether they are Universal Messaging
channels. If a channel does not exist as a
Universal Messaging channel, it is not
created.

Default: precreate.

Specifies a prefix for channel names. Channel
names must have this prefix to allow dynamic
creation.

um.channels.prefix

Default: UM_.

List of RNAME values (URLs). You can use commas
or semicolons as separators.

um.realms

Commas indicate that you want the adapter to
try to connect to theUniversalMessaging realms
in the order in which you specify them here.
Semicolons indicate that the adapter can try to
connect to the specified Universal Messaging
realms in any order.

Every RNAME you specifymust belong to the same
Universal Messaging cluster.

360 Connecting Apama Applications to External Components 10.11.3

14 Using the IAF

DescriptionProperty name

Default: Required.

Security certificate used to connect to Universal
Messaging.

um.security.certificatefile

Default: None.

Password for the specified security certificate
file.

um.security.certificatepassword

Default: None.

Certificate authority file for verifying server
certificate.

um.security.truststorefile

Default: None.

User name supplied to the UniversalMessaging
realm.

um.security.user

Default: Current user name from the operating
system.

Configures how many Universal Messaging
sessions to use. More sessions can increase

um.session.pool

throughput by allowing events to be sent in
parallel, but may consume more CPU.

Note that if you are using the SHM protocol to
communicatewith the broker, youwill probably
want to limit the number of sessions to 1 or 2, as
SHM connections will consume 2 CPU cores for
each session.

Default: 8.

For example, a UniversalMessaging properties file for anApama installation running onWindows
64 might contain the following:
um.realms=nsp://localhost:5629
um.security.user=ckent
um.channels.mode=autocreate

The Universal Messaging configuration file for the IAF is encoded in UTF-8.

Communicating with the correlator over Universal Messaging

Note:
Use of Universal Messaging from the IAF is deprecated andwill be removed in a future release.
It is recommended that you now change any IAF-based adapter configurations using Universal

Connecting Apama Applications to External Components 10.11.3 361

14 Using the IAF

Messaging with a <universal-messaging> element in the configuration file to use an <apama>
element to talk directly to the correlator. See “Apama correlator configuration” on page 354.

The correlator must be using the Universal Messaging transport connectivity plug-in (see “The
Universal Messaging Transport Connectivity Plug-in” on page 73), and this connectivity plug-in
must be configured to be equivalent to the Universal Messaging properties you have configured
for the IAF.

You should use a single dynamicChains definition:
dynamicChains:
UMString:

- apama.eventString:
suppressLoopback: true
description: "@{um.rnames}"
remoteAddress: "@{um.rnames}"

- stringCodec
nullTerminated: true

- UMTransport:
channelPattern: ".*"

The configuration of the chain manager should be equivalent to certain properties defined in the
IAF:

Connectivity plug-in configurationIAF configuration
managerConfig:
channel:

prefix: UM_
includePrefixOnUM: true
missingChannelMode: ignore

um.channels.prefix=UM_
um.channels.mode=precreate

managerConfig:
channel:

prefix: UM_
includePrefixOnUM: true
missingChannelMode: create

um.channels.prefix=UM_
um.channels.mode=autocreate

managerConfig:
channel:

prefix: UM_
includePrefixOnUM: true
missingChannelMode: create

um.channels.prefix=UM_
um.channels.mode=mixed

managerConfig:
channel:

prefix: ""
missingChannelMode: ignore

um.channels.mode=precreate

Logging configuration (optional)
The optional <logging> and <plugin-logging> elements define the logging configuration used by
the adapter. If present, they must appear as the first elements nested in the <adapter-config>
element.

362 Connecting Apama Applications to External Components 10.11.3

14 Using the IAF

The <logging> element configures the logging for the IAF itself, whereas the <plugin-logging>
element configures logging for the transport and codec layer plug-ins in the adapter.

Both elements have two attributes:

The level attribute sets the logging verbosity level; it must be one of the strings TRACE, DEBUG,
INFO, WARN, ERROR, FATAL, CRIT, or OFF (with the same case).

The file attribute determines the file that logging messages will be written to. This should be
a file path relative to the directory that the adapter was started from, or one of the special
values stdout or stderrwhich to log to standard output or standard error, respectively.

If the IAF cannot write to the specified log file, the adapter will fail to start.

Note:
If the --logfile and --loglevel options are passed to the IAF executable when this is run, the
<logging> and <plugin-logging> elements are ignored.

An example of these elements is provided below:
<adapter-config>
<logging level="INFO" file="iaf.log" />
<plugin-logging level="DEBUG" file="plugins.log" />
...

</adapter-config>

If logging is not configured explicitly in the configuration file or with command-line options,
logging defaults to the INFO level on the standard error stream.

The <logging> element accepts two optional sub-elements, <upstream-events> and
<downstream-events> that can be configured to log details of all events sent to and received from
a connected correlator, without needing to set the entire IAF to DEBUG level logging. These
sub-elements each take a single attribute (level) whose values specifies the logging level to be
used to log upstream and downstream events, respectively. If this log level is equal to or greater
than the IAF logging level, details of the events will appear in the IAF log file. For example:
<logging level="WARN">
<upstream-events level="ERROR"/>
<downstream-events level="INFO"/>

</logging>

In this configuration, upstream events will be logged (because ERROR is greater than WARN) but
downstreameventswill not (because INFO is less than WARN). If either of the upstreamor downstream
event logging levels is not explicitly set, it will default to DEBUG (so events will not be logged by
default, unless the IAF is explicitly configured for DEBUG logging).

Java configuration (optional)
Transport and codec plug-ins written in Java are executed by the IAF inside an embedded Java
Virtual Machine (JVM). The optional <java> element allows the environment of this JVM to be
configured.

The <java> element may contain zero or more of the following nested elements:

Connecting Apama Applications to External Components 10.11.3 363

14 Using the IAF

<classpath> – This element adds a single entry onto the JVM classpath, which is the list of
paths used by Java to locate classes. Each <classpath> element has a single path attribute that
specifies a directory or Java Archive file (.jar) to add to the classpath.

The full classpath used by the IAF's JVM is made up by concatenating (in order):

1. the contents of the APAMA_IAF_CLASSPATH environment variable if one is defined,

2. each of the path entries specified by <classpath> elements, in the order they appear in the
configuration file, OR if there are none, the contents of the CLASSPATH environment variable,

3. the path of the lib/JPlugin_internal.jar file used internally by the IAF.

Additionally, if a jarName attribute is used in the <codec> or <transport> element that defines
a plug-in (as in “Transport and codec plug-in configuration” on page 340), the plug-in will be
loaded using a new classloader with access to the specified Java Archive in addition to the
JVM classpath.

You should make sure that all shared classes are in a separate jar that is specified by a
<classpath> element. The shared classes are then loaded by the parent classloader. This ensures
that when a codec or transport references a shared class, they both agree it is the same class.

<jvm-option> – This element allows arbitrary JVM command-line options to be specified. The
JVM option should be placed between the start and end jvm-option tags. For example:
<jvm-option>-Xmx256m</jvm-option>

See the usage screen of the JVM's Java executable for a full list of supported options.

<property> – This element specifies a Java system property that should be passed to the JVM.
It has name and value attributes, such that using:
<property name="propName" value="propValue"/>

is a shorthand equivalent to:
<jvm-option>-DpropName=propValue</jvm-option>

See “The IAF runtime” on page 328 for a description of how the IAF selects the JVM library to
use.

The properties specified in the <java> element cannot be changed once the JVM has been loaded
by the IAF. This will occur when the IAF reads a configuration file that specifies a Java transport
or codec plug-in. If the same IAF process is later reconfigured to use only C/C++ transports, the
JVM will not be unloaded. The IAF will log a warning message if a reconfiguration of the IAF
process attempts to change the previously configured JVM properties.

IAF samples
Your distribution contains two complete examples that demonstrate how the IAF can be used in
practice: C and Java implementations of a text file adapter, including build scripts and complete
source code. See “Codec IAFPlug-ins” on page 499 for information about how the sample plug-ins
could be used in practice.

364 Connecting Apama Applications to External Components 10.11.3

14 Using the IAF

The C example

The C example is available in samples\iaf_plugin\c\simple and contains the following:

The complete source code of the FileTransport transport layer plug-in and the StringCodec
codec plug-in, in the FileTransport.c and StringCodec.c files.

The FileTransport transport layer plug-in can read and write messages from and to a text
file. This makes it a useful tool in testing the IAF and the correlator with files of sample
messages.

The StringCodec codec plug-in can decode messages represented as strings containing a
list of field names and values. The configuration properties for the plug-in allow
customization of the syntactic characters used as field, name, and message separators (for
example, ",", "=", ";").

A Makefile for compiling the plug-in sources with GNUMake on UNIX. This builds
libFileTransport.so and libStringCodec.so, the plug-in binaries.

A “workspace” file and dsp folder for compiling the plug-in sources with Microsoft's Visual
Studio .NET onMicrosoftWindows. The make.bat batch file can be used to build theWindows
plug-in binaries, FileTransport.dll and StringCodec.dll.

A sample configuration file, config.xml. This is an example of an IAF configuration that loads
Cplug-ins, configures themwith plug-in properties, injects a specific EPLfile into the correlator,
provides a simple event mapping, and configures the IAF for sending and receiving events to
and from the correlator.

A simple EPL file, simple.mon. This defines a monitor that examines the incoming events and
selectively emits some back out to the IAF.

A text file, simple-feed.evt, with some test input messages that can be loaded by the File
Transport plug-in, parsed by the String Codec plug-in, translated into Apama events by the
Semantic Mapper, and then injected into the correlator.

A reference file, simple-ref.evt, which shows the expected output file generated when the
adapter is run.

To run the example, follow the steps outlined in the README.txt file provided in the samples\iaf_
plugin\c\simple folder.

Plug-ins need to be placed in a location where they can be picked up by the correlator:

On Windows, you either need to copy the .dll into the bin folder, or else place it somewhere
which is on your path, that is a location that is referenced by the PATH environment variable.

On UNIX, you either need to copy the .so into the lib directory, or else place it somewhere
which is on your library path, that is a directory that is referenced by the LD_LIBRARY_PATH
environment variable.

Connecting Apama Applications to External Components 10.11.3 365

14 Using the IAF

The Java example

The Java example is in the samples\iaf_plugin\java\simple directory, which contains the files:

The complete source code of the JFileTransport transport layer plug-in and the JStringCodec
codec plug-in, in the src directory.

The JFileTransport transport layer plug-in can read and write messages from and to a
text file. Thismakes it a useful tool in testing the IAF and the correlator with files of sample
messages.

In normal operation, JFileTransport sends String objects on to the codec for decoding;
however by setting the upstreamNormalised plug-in property it is possible to use the
transport plug-in in a different mode in which it also performs the functionality that the
codec usually performs (in this case by calling the JStringCodec class directly). In thismode
the transport passes IAF normalized eventmessages on to the codec plug-in, demonstrating
the use of the pass-through JNullCodec plug-in provided with the Apama distribution.

The JStringCodec codec plug-in can convert between normalized events and messages
represented as strings containing a list of field names and values. The configuration
properties for the plug-in allow customization of the syntactic characters used as field,
name, and message separators (for example, ",", "=", ";").

An Apache Ant build.xml file is included, for compiling the JFileAdapter.jar binary that
contains both plug-ins (and works on all platforms).

A sample configuration file, config.xml. This is an example of an IAF configuration that loads
Java transport and codec plug-ins, configures themwith plug-in properties, provides an event
mapping, and configures the IAF for sending and receiving events to and from the correlator.

This configuration file also includes several optional configuration options for logging, custom
JVMoptions, logging of unmapped events/messages, and use of non-standard correlator event
batching.

A second configuration file, config-no-codec.xml that demonstrates how the standard
JNullCodec plug-in can be used with a transport plug-in that incorporates codec functionality
itself and produces normalized events directly.

A simple EPL file, simple.mon. This is identical to the file included with the C sample, and
defines a monitor that examines the incoming events and selectively emits some back out to
the IAF.

A text file, simple-feed.evt. This is identical to the file includedwith the C sample, and contains
some test inputmessages that can be loaded by the File Transport plug-in, parsed by the String
Codec plug-in, translated into Apama events by the Semantic Mapper, and then injected into
the correlator.

A reference file, simple-ref.evt, which shows the expected output file generated when the
adapter is run. Note that this file is (only trivially) different to the reference file for the C
plug-ins.

366 Connecting Apama Applications to External Components 10.11.3

14 Using the IAF

To run the example, follow the steps outlined in the README.txt file provided in the samples\iaf_
plugin\java\simple folder.

Connecting Apama Applications to External Components 10.11.3 367

14 Using the IAF

368 Connecting Apama Applications to External Components 10.11.3

14 Using the IAF

15 C/C++ Transport Plug-in Development

■ The C/C++ transport plug-in development specification .. 370

■ Transport example .. 373

■ Getting started with transport layer plug-in development ... 373

Connecting Apama Applications to External Components 10.11.3 369

The transport layer is the front-end of the IAF. The transport layer's purpose is to abstract away
the differences between the programming interfaces exposed by different middleware message
sources and sinks. It consists of one or more custom plug-in libraries that extract downstream
messages from external message sources ready for delivery to the codec layer, and send Apama
events already encoded by the codec layer upstream to the external message sink. See “The
Integration Adapter Framework” on page 319 for a full introduction to transport plug-ins and the
IAF's architecture.

An adapter should send events to the correlator only after its start function is called and before
the stop function returns.

This section includes the C/C++ transport plug-in development specification and additional
information for developers of event transports using C/C++. “Transport Plug-in Development in
Java” on page 391 provides information about developing transport plug-ins in Java.

To configure the build for a transport plug-in:

On Linux, copying and customizing an Apama makefile from a sample application is the
easiest method.

On Windows, you might find it easiest to copy an Apama sample project. If you prefer to use
a project you already have, be sure to add $(APAMA_HOME)\include as an include directory. To
do this in Visual Studio, select your project and then select Project Properties > C/C++ >
General > Additional Include Directories.

Also, link against apiaf.lib. To do this in Visual Studio, select your project and then select
Project Properties > Linker > Input > Additional Dependencies and add
apiaf.lib;apcommon.lib.

Finally, select Project Properties > Linker > General > Additional Library Directories, and
add $(APAMA_HOME)\lib.

The C/C++ transport plug-in development
specification
A C/C++ transport layer plug-in is implemented as a dynamic shared library. In order for the IAF
to be able to load and use it, it must comply with Apama's transport plug-in development
specification. This specification describes the structure of a transport layer plug-in, and the C/C++
functions it needs to implement so that it can be usedwith the IAF. The specification also provides
a mechanism for startup and configuration parameters to be passed to the plug-in from the IAF's
configuration file.

Property names and values used by transport plug-ins must be in UTF-8 format.

A transport layer plug-in implementationmust include the C header file EventTransport.h. It also
needs to include EventCodec.h, to allow the event transport to pass messages to codecs within the
IAF codec layer. You can find these files in the include directory of your Apama installation.

370 Connecting Apama Applications to External Components 10.11.3

15 C/C++ Transport Plug-in Development

Transport functions to implement
EventTransport.h provides the definition for a number of functions whose implementation needs
to be provided by the event transport author. See the AP_EventTransport_Functions structure in
the API Reference for C++ (Doxygen) for detailed information on these functions.

When the start function is invoked, the event transport is effectively signaled to start accepting
incoming messages and pass them onto a codec. Events should not be sent to the correlator until
the start function is called.

It is up to the event transport to determine which codec to communicate with from the list of
codecs made available to it through the addEventDecoder and removeEventDecoder functions.
Typically, a configuration property would be used to specify the codec to be used. If a handle to
the desired codec had been stored in a variable called decoder (of type AP_EventDecoder*) when
addEventDecoderwas called, an event could be passed on to the codec using:
decoder->functions->sendTransportEvent(decoder, event);

This codec function is described in “C/C++ Codec Plug-in Development” on page 375.

Events should not be sent to the correlator after the stop function has returned. The stopmethod
must wait for any other threads sending events to complete before the stopmethod returns.

Defining the transport function table
The EventTransport.h header file provides a definition for an AP_EventTransport_Functions
structure. This defines a function tablewhose elementsmust be set to point to the implementations
of the above functions. See the AP_EventTransport_Functions structure in theAPI Reference for C++
(Doxygen) for more information.

Note that the order of the function pointers within the function table is critical to the reliable
operation of the IAF. However, the order that the function definitions appear within the plug-in
source code, and indeed the names of the functions, are not important. Apama recommends that
the functions be declared static, so that they are not globally visible and can only be accessed via
the function table.

It is therefore not obligatory to implement the functionswith the same names as per the definitions,
as long as themapping is performed correctly in an instantiation of AP_EventTransport_Functions.
A definition in an event transport implementation would look as follows:
static struct AP_EventTransport_Functions EventTransport_Functions
= {
updateProperties,
sendTransportEvent,
addEventDecoder,
removeEventDecoder,
flushUpstream,
flushDownstream,
start,
stop,
getLastError,
getStatus

Connecting Apama Applications to External Components 10.11.3 371

15 C/C++ Transport Plug-in Development

};

The function table created above needs to be placed in an AP_EventTransport object, and one such
object needs to be created for every plug-in within its constructor function. See the
AP_EventTransport_Functions structure in theAPI Reference for C++ (Doxygen) formore information.

The transport constructor, destructor and info functions
Every event transport needs to implement a constructor function, a destructor function and an
“info” function. Thesemethods are called by the IAF to (respectively) instantiate the event transport,
to clean it up during unloading, and to provide information about the plug-in's capabilities.

EventTransport.h provides the following definitions:

AP_EventTransportCtorPtr points to the constructor function. Typically part of the work of
this constructorwould be a call to updateProperties, in order to set up the initial configuration
of the plug-in.

AP_EventTransportDtorPtr points to the related destructor function.

AP_EventTransportInfoPtr points to the info function.

The IAF will search for these functions by the names AP_EventTransport_ctor,
AP_EventTransport_dtor and AP_EventTransport_infowhen the library is loaded, so youmust use
these exact names when implementing them in a transport layer plug-in.

See the API Reference for C++ (Doxygen) for more information on the above definitions.

Other transport definitions
EventTransport.h also provides some additional definitions that the event transport author needs
to be aware of:

AP_EventTransportError defines the set of error codes that can be returned by the transport's
functions.

The AP_EventTransportProperty structure is a definition for a configuration property. This
corresponds to the properties that can be passed in as initialization or re-configuration
parameters from the configuration file of the IAF.

Properties are passed to the event transport within an AP_EventTransportProperties structure.

The status of a transport is reported in an AP_EventTransportStatus structure.

Transport utilities
The header files AP_EventParser.h and AP_EventWriter.h provide definitions for the Event Parser
and Event Writer utilities. These utilities allow parsing and writing of the string form of reference
types that are used by any <map type="reference"> elements in the adapters configuration file.
These files are located in the include directory of your Apama installation. See the contents of
these files for more information.

372 Connecting Apama Applications to External Components 10.11.3

15 C/C++ Transport Plug-in Development

Communication with the codec layer
If a transport layer plug-in is to be able to receive messages and then pass them on to the codec
layer, it must be able to communicate with appropriate decoding codecs. A decoding codec is one
that can acceptmessages from the transport layer andparse them (decode them) into the normalized
event format accepted by the Semantic Mapper.

When a codec is loaded into the IAF, its details are passed to all transport layer plug-ins by calling
their addEventDecoder function. This tells the transport layer plug-in the name of the decoding
codec and provides a reference to its AP_EventDecoder structure.

The reference to AP_EventDecoder gives the transport layer plug-in access to the following functions:

sendTransportEvent

getLastError

See AP_EventTransport_Functions in the API Reference for C++ (Doxygen) for more information on
these functions.

Assuming the reference to the AP_EventDecoder structure has been stored in a variable called
decoder, the functions can be called as follows:
errorCode = decoder->functions->sendTransportEvent(decoder, event);
errorMessage = decoder->functions->getLastError(decoder);

Transport example
As part of the IAF distribution, Apama includes the FileTransport transport layer plug-in,
implemented in the samples\iaf_plugin\c\simple\FileTransport.c source file.

The FileTransport plug-in can read and write messages from and to a text file, and it is
recommended that developers examine this sample to see what a typical transport plug-in
implementation looks like.

See “IAF samples” on page 364 formore information about this sample. “The Basic File IAFAdapter
(FileTransport/JFileTransport)” on page 497 describes how the FileTransport plug-in can be used
in practice.

Getting started with transport layer plug-in
development
In order to facilitate quick development of a transport layer plug-in, your distribution includes a
transport plug-in skeleton.

This file, called skeleton-transport.c, implements a complete transport layer plug-in that complies
with the transport layer Plug-in Development Specification but where all the custom message
source specific functionality is missing. The file is located in the samples\iaf_plugin\c\skeleton
directory of your installation.

Connecting Apama Applications to External Components 10.11.3 373

15 C/C++ Transport Plug-in Development

The skeleton starts a background thread to do the actualmessage reading. This is the only approach
suitable, unless the external transport is able to call back into the transport layer plug-in.

In order to turn the skeleton into a fully operationalmessage source specific transport layer plug-in,
the plug-in author needs to fill in the gaps within the updateProperties, sendTransportEvent,
addEventDecoder, removeEventDecoder, flushUpstream, flushDownstream, start, stop, getLastError
and getStatus functions. These must implement their specified functionality in the context of the
custom message source. The constructor, destructor and info functions are also likely to require
adaptation.

The skeleton defines a structure, called EventTransport_Internals, to store all its private data, and
this structure is placed within the reserved field of the AP_EventTransport object created within
the constructormethod. It is likely that this structurewill need to bemodified to contain additional
data that the adapter might require.

Any custom initialization and communications code, such as code to connect and register with a
message bus, or opening a database, etc., can either be placed in the constructor or in the primary
worker thread's runmethod. Alternatively, one might need to place such code in the
updatePropertiesmethod, which is called by the IAF at initialization time as well as whenever it
is requested to reload the configuration file and thus resend the plug-in's properties.

The distribution also includes a Makefile (for usewithGNUMake onUNIX) aswell as aworkspace
file and dsp folder, for use with Microsoft's Visual Studio .NET on Microsoft Windows, for this
skeleton, which can be adapted to compile your transport layer plug-in and link it against any
custom libraries required.

Once a plug-in is built, it needs to be placed in a location where it can be picked up by the IAF.

This means that on Windows you either need to copy the .dll into the bin folder, or else place it
somewhere which is on your “path”, that is a location that is referenced by the PATH environment
variable.

On UNIX you either need to copy the .so into the lib directory, or else place it somewhere which
is on your “library path”, that is a directory that is referenced by the LD_LIBRARY_PATH environment
variable.

374 Connecting Apama Applications to External Components 10.11.3

15 C/C++ Transport Plug-in Development

16 C/C++ Codec Plug-in Development

■ The C/C++ codec plug-in development specification ... 376

■ Transport example .. 384

■ Getting started with codec layer plug-in development .. 384

Connecting Apama Applications to External Components 10.11.3 375

The codec layer is a layer of abstraction between the transport layer and the IAF's SemanticMapper.
It consists of one or more plug-in libraries that perform message encoding and/or decoding.
Decoders translate downstream messages retrieved by the transport layer into the standard
“normalized event” format on which the Semantic Mapper's rules run. Encoders work in the
opposite direction, encoding upstream normalized events into an appropriate format for transport
layer plug-ins to send on. See “The Integration Adapter Framework” on page 319 for a full
introduction to codec plug-ins and the IAF's architecture.

This topic includes theC/C++ codec plug-in development specification and additional information
for developers of C/C++ event codecs. “Java Codec Plug-in Development” on page 397 provides
analogous information about developing codec plug-ins in Java.

Before developing a new codec plug-in, it is worth consideringwhether one of the standardApama
IAF plug-ins could be used instead. “Codec IAF Plug-ins” on page 499 providesmore information
on the standard IAF codec plug-ins: StringCodec and NullCodec. The StringCodec plug-in codes
normalized events as formatted text strings. The NullCodec plug-in is useful in situations where
it does not make sense to decouple the codec and transport layers, and allows transport plug-ins
to communicate with the Semantic Mapper directly using normalized events.

To configure the build for a codec plug-in:

On Linux, copying and customizing an Apama makefile from a sample application is the
easiest method.

On Windows, you might find it easiest to copy an Apama sample project. If you prefer to use
a project you already have, be sure to add $(APAMA_HOME)\include as an include directory. To
do this in Visual Studio, select your project and then select Project Properties > C/C++ >
General > Additional Include Directories.

Also, link against apiaf.lib. To do this in Visual Studio, select your project and then select
Project Properties > Linker > Input > Additional Dependencies and add:

apiaf.lib;apcommon.lib

Finally, select Project Properties > Linker > General > Additional Library Directories, and
add $(APAMA_HOME)\lib.

The C/C++ codec plug-in development specification
A codec plug-in needs to be structured as a dynamic shared library. In order for the IAF to be able
to load and use it, it must comply with Apama's codec plug-in development specification. This
describes the overall format of a codec plug-in and the C/C++ functions it needs to implement so
that its functionality is accessible by the IAF. The specification also provides a mechanism for
startup and configuration parameters to be passed to the plug-in from the IAF's configuration file.

Property names and values used by codec plug-ins must be in UTF-8 format.

A codec plug-in implementation must include the C header file EventCodec.h. As a codec also
needs to communicate bothwith a transport layer plug-in (or event transport) andwith the Semantic
Mapper, EventTransport.h and SemanticMapper.h also need to be included. You can find these
files in the include directory of your Apama installation.

376 Connecting Apama Applications to External Components 10.11.3

16 C/C++ Codec Plug-in Development

Codec functions to implement
EventCodec.h provides the definition for a number of functions whose implementation needs to
be provided by the event transport author.

However, in contrast to the Transport Layer Plug-inDevelopment Specification, the set of functions
that need to be implemented varies depending on whether the codec is to implement only a
message decoder, only a message encoder, or a bidirectional encoder/decoder.

In all cases, implementations need to be provided for the following functions:

updateProperties

getLastError

getStatus

It is recommended that updateProperties is invoked by the codec constructor.

See the AP_EventCodec_Functions structure in the API Reference for C++ (Doxygen) for detailed
information on these functions.

Codec encoder functions

If the codec is to implement an encoder, implementations need to be provided for the following
functions:

sendNormalisedEvent

flushUpstream

getLastError

addEventTransport

removeEventTransport

See the AP_EventEncoder_Functions structure in the API Reference for C++ (Doxygen) for detailed
information on these functions.

Codec decoder functions

If the codec is to provide a decoder, implementations need to be provided for the following
functions:

sendTransportEvent

setSemanticMapper

flushDownstream

getLastError

Connecting Apama Applications to External Components 10.11.3 377

16 C/C++ Codec Plug-in Development

See the AP_EventDecoder_Functions structure in the API Reference for C++ (Doxygen) for detailed
information on these functions.

Defining the codec function tables
In a transport layer plug-in, the plug-in author needs to provide a function table that tells the IAF
which functions to call to invoke specific functionality.

The Codec Development Specification follows this model but depending on whether the codec
being developed is an encoder, a decoder or an encoder/decoder, up to three function tables may
need to be defined.

Note that the order of the function pointers within each function table is critical to the reliable
operation of the IAF. However, the order that the function definitions appear within the plug-in
source code, and indeed the names of the functions, are not important. Apama recommends that
the functions be declared static, so that they are not globally visible and can only be accessed via
the function table.

The codec function table

Every codec needs to define a generic codec function table. The header file provides a definition
for this as an AP_EventCodec_Functions structure with the following functions:

updateProperties

getLastError

getStatus

where the library functions updateProperties, getLastError and getStatus are being defined as
being the implementations of the Codec Development Specification's
updateProperties,getLastError and getStatus function definitions respectively.

See the AP_EventCodec_Functions structure in the API Reference for C++ (Doxygen) for detailed
information.

The codec encoder function table

If the codec being implemented is to act as an encoder, it needs to implement the encoder functions
listed previously and map them in an encoder function table. This structure is defined in
EventCodec.h as an AP_EventEncoder_Functions structure with the following functions:

sendNormalisedEvent

flushUpstream

getLastError

addEventTransport

removeEventTransport

378 Connecting Apama Applications to External Components 10.11.3

16 C/C++ Codec Plug-in Development

See the AP_EventEncoder_Functions structure in the API Reference for C++ (Doxygen) for detailed
information.

In the implementation of an encoding codec, this function table could be implemented as follows:
static struct AP_EventEncoder_Functions EventEncoder_Functions = {
sendNormalisedEvent,
flushUpstream,
getLastErrorEncoder,
addEventTransport,
removeEventTransport

};

This time, the library functions sendNormalisedEvent, flushUpstream,getLastError,
addEventTransport and removeEventTransport are being defined as the implementations of the
Codec Development Specification's sendNormalisedEvent, flushUpstream,getLastError,
addEventTransport and removeEventTransport function definitions respectively.

The codec decoder function table

If the codec being implemented is to act as a decoder, it needs to implement the decoder functions
listed previously andmap them in a decoder function table. This structure is defined in EventCodec.h
as an AP_EventDecoder_Functions structure with the following functions:

sendTransportEvent

setSemanticMapper

flushDownstream

getLastError

See the AP_EventDecoder_Functions structure in the API Reference for C++ (Doxygen) for detailed
information.

In the implementation of a decoding codec, this function table could be implemented as follows:
static struct AP_EventDecoder_Functions EventDecoder_Functions = {
sendTransportEvent,
setSemanticMapper,
flushDownstream,
getLastErrorDecoder

};

As before, this definition defines a number of library functions as the implementations of the
function definitions specified in the Codec Development Specification.

Registering the codec function tables

The encoding and decoding function tables created above need to be placed in the relevant object,
AP_EventEncoder and AP_EventDecoder. These, together with the generic function table, need to be
placed in an AP_EventCodec object. See theAPI Reference for C++ (Doxygen) for detailed information
on these structures.

Connecting Apama Applications to External Components 10.11.3 379

16 C/C++ Codec Plug-in Development

An AP_EventCodec object needs to be created for every plug-in within its constructor function. The
encoder and decoder fields in it may be set to NULL if the codec does not implement the respective
functionality, although clearly it is meaningless to have both set to NULL.

The codec constructor, destructor and info functions
Every event codec needs to implement a constructor function, a destructor function and an “info”
function. These methods are called by the IAF to (respectively) to instantiate the event codec, to
clean it up during unloading, and to provide information about the plug-in's capabilities.

EventCodec.h provides the following definitions:

AP_EventCodecCtorPtr points to the constructor function.

AP_EventCodecDtorPtr points to the destructor function.

AP_EventCodecInfoPtr points to the info function. Every codec needs to implement an info
function. This is called by the IAF to obtain information as to the capabilities (encoder/decoder)
of the codec.

The IAFwill search for these functions by the names AP_EventCodec_ctor and AP_EventCodec_dtor
when the library is loaded, and it will search for and call AP_EventCodec_info. So you must use
these exact names when implementing a codec plug-in.

See the API Reference for C++ (Doxygen) for more information on the above definitions.

Other codec definitions
EventCodec.h also provides some additional definitions that the codec author needs to be aware
of.

First of these are the codec capability bits. These are returned by the info function to definewhether
the codec can decode or encode messages.
#define AP_EVENTCODEC_CAP_ENCODER 0x0001
#define AP_EVENTCODEC_CAP_DECODER 0x0002

AP_EventCodecErrordefines the set of error codes that can be returned by the codec's functions.

The AP_EventCodecProperty structure is a definition for a configuration property. This
corresponds to the properties that can be passed in as initialization or re-configuration
parameters from the configuration file of the IAF.

Properties are passed to the event transport within an AP_EventCodecProperties structure.

The status of a codec is reported in an AP_EventCodecStatus structure.

You are advised to peruse EventCodec.h for the complete definitions. EventTransport.h and
SemanticMapper.h are also relevant as they define the functions that a codec author can invoke
within the transport layer and the Semantic Mapper, respectively.

380 Connecting Apama Applications to External Components 10.11.3

16 C/C++ Codec Plug-in Development

Codec utilities
The header files AP_EventParser.h and AP_EventWriter.h provide definitions for the Event Parser
and Event Writer utilities. These utilities allow parsing and writing of the string form of reference
types that are used by any <map type="reference"> elements in the adapters configuration file.
These files are located in the include directory of your Apama installation. See the contents of
these files for more information.

Communication with other layers
A decoding codec plug-in's role is to decode messages from a transport layer plug-in into a
normalized format that can be processed by the Semantic Mapper. To achieve this, it needs to be
able to communicate with the Semantic Mapper. The accessible Semantic Mapper functionality is
presented in SemanticMapper.h.

When a decoding codec starts, it is passed a handle to an AP_SemanticMapper object through its
setSemanticMapper function. This object is defined in SemanticMapper.h, where functions, (of type
AP_SemanticMapper_Functions*) points to the definitions for two functions:

sendNormalisedEvent

getLastError

Code inside a decoding codec that calls these functions on the Semantic Mapper looks as follows.
Assuming that mapper holds a reference to the AP_SemanticMapper object:
errorCode = mapper->functions->sendNormalisedEvent(mapper, NormalisedEvent);

and likewise for getLastError.

AP_SemanticMapperError defines the error codes that can be returned by sendNormalisedEvent .

On the other hand, an encoding codec plug-in's role is to encode messages in normalized format
into some specific format that can then be accepted by a transport layer plug-in for transmission
to an externalmessage sink (like amessage bus). To achieve this, it needs to be able to communicate
with a transport layer plug-in loaded in the IAF.

When an encoding codec starts, its addEventTransport functionwill be called once for each available
transport. For each, it is passed a handle to an AP_EventTransport object. This object is defined in
EventTransport.h and was described in detail in “C/C++ Transport Plug-in Development” on
page 369. It contains a pointer to AP_EventTransport_Functions, which in turn references the
functions available in the transport layer plug-in. Of these, only two are relevant to the author of
an encoding codec:

sendTransportEvent

getLastError

Code inside an encoding codec that calls these functions on the transport layer plug-in looks as
follows. Assuming that transport holds a reference to the AP_EventTransport object:
errorCode = transport->functions->sendTransportEvent(transport, event);

Connecting Apama Applications to External Components 10.11.3 381

16 C/C++ Codec Plug-in Development

and likewise for getLastError.

Working with normalized events
The function of a decoding codec plug-in is to convert incoming messages into a standard
normalized event format that can be processed by the Semantic Mapper. Events sent upstream to
an encoding codec plug-in are provided to the plug-in in this same format.

Normalized events are essentially dictionaries of name-value pairs, where the names and values
are both character strings. Each name-value pair nominally represents the name and content of a
single field from an event, but users of the data structure are free to invent customnaming schemes
to represent more complex event structures. Names must be unique within a given event. Values
may be empty or NULL.

Some examples of normalized event field values for different types are:

string "a string"

integer "1"

float "2.0"

decimal "100.0d"

sequence<boolean> "[true,false]"

dictionary<float,integer> "{2.3:2,4.3:5}"

SomeEvent "SomeEvent(12)"

Note:
When assigning names to fields in normalized events, keep inmind that the fields and transport
attributes for event mapping conditions and event mapping rules both use a list of fields
delimited by spaces or commas. This means, for example that <id fields="Exchange EX,foo"
test="==" value="LSE"/>will successfully match a field called Exchange, EX or foo, but not a
field called Exchange EX,foo.While fieldswith spaces or commas in their namesmay be included
in a payload dictionary in upstreamor downstreamdirections, they cannot be referenced directly
in mapping or id rules.

To construct strings for the normalized event fields representing container types (dictionaries,
sequences, or nested events), use the Event Writer utility found in the AP_EventWriter.h header
file, which is located in the include directory of the Apama installation. The following examples
show how to add a sequence and a dictionary to a normalized event (note the escape character
(\) used in order to insert a quotation mark into a string).
#include <AP_EventWriter.h>

AP_EventWriter *map, *list;
AP_NormalisedEvent *event;
AP_EventWriterValue key, value;

list=AP_EventWriter_ctor(AP_SEQUENCE, NULL);
list->addString(list, "abc");

382 Connecting Apama Applications to External Components 10.11.3

16 C/C++ Codec Plug-in Development

list->addString(list, "de\"f");

map=AP_EventWriter_ctor(AP_DICTIONARY, NULL);
key.stringValue="key1"; value.stringValue="value";
map->addDictValue(map, AP_STRING, key, AP_STRING, value);
key.stringValue="key\"{}2";
value.stringValue="value\"{}2";
map->addDictValue(map, AP_STRING, key, AP_STRING, value);

event=AP_NormalisedEvent_ctor();
event->functions->addQuick(event, "mySequenceField",
event->functions->list->toString(list));
event->functions->event->functions->addQuick(event,

"myDictionaryField", event->functions->map->toString(map));

AP_EventWriter_dtor(list);
AP_EventWriter_dtor(map);

An any field and optional field can be added as follows:
AP_EventWriter* event = AP_EventWriter_ctor(AP_EVENT, "MyEvent");

AP_EventWriterValue val;
val.refValue = NULL;

//add an 'empty' any
event->addAny(event, AP_EMPTY, val, NULL);

//add an 'empty' optional as the second field
event->addOptional(event, AP_EMPTY, val);

val.intValue = 100;
event->addAny(event, AP_INTEGER, val, NULL);
val.intValue = 200;
event->addOptional(event, AP_INTEGER, val);

//Add an 'any' field containing 'optional'
AP_EventWriter *opt = AP_EventWriter_ctor(AP_EVENT, "optional");
opt->addInt(opt, 1);

val.refValue = opt;
event->addAny(writer, AP_EVENT, val, "optional<integer>");

Fields names and values of normalized events are in UTF-8 format. This means that the writer of
the codec needs to ensure that downstream events are correctly formed and the codec should
expect to handle UTF-8 coming upstream.

The NormalisedEvent.h header file defines objects and functions that make up a special
programming interface for constructing and examining normalized events. It contains two main
structures:

AP_NormalisedEvent

This structure represents a single normalized event. It has a pointer to a table of client-visible
functions exported by the object called AP_NormalisedEvent_Functions. This function table
provides access to the operations that may be performed on the event object.

Connecting Apama Applications to External Components 10.11.3 383

16 C/C++ Codec Plug-in Development

In addition, the AP_NormalisedEvent_ctor constructor function is provided to create a new
event instance. AP_NormalisedEvent_dtor destroys a normalized event object, and should be
called when the event is no longer required to free up resources.

AP_NormalisedEventIterator

This structure can be used to step through the contents of a normalized event structure, in
forwards or reverse order. It contains a function table defined by
AP_NormalisedEventIterator_Functions, which includes all of the functions exported by a
normalized event iterator.

AP_NormalisedEventIterator_dtor destroys a normalized event iterator object, and should be
calledwhen the iterator is no longer required to free up resources. There is no public constructor
function; iterators are created and returned only by AP_NormalisedEvent functions.

In both AP_NormalisedEvent and AP_NormalisedEventIterator functions, there is always a pointer
to the corresponding structure. This is analogous to the implicit thispointer passed to aC++ object
when a member function is invoked on it.

See the NormalisedEvent.h header file for more information about the structures and functions.

Transport example
As part of the IAF distribution, Apama includes the FileTransport transport layer plug-in,
implemented in the samples\iaf_plugin\c\simple\FileTransport.c source file.

The FileTransport plug-in can read and write messages from and to a text file, and it is
recommended that developers examine this sample to see what a typical transport plug-in
implementation looks like.

See “IAF samples” on page 364 formore information about this sample. “The Basic File IAFAdapter
(FileTransport/JFileTransport)” on page 497 describes how the FileTransport plug-in can be used
in practice.

Getting started with codec layer plug-in development
Note:
Before developing a new codec plug-in, it is worth considering whether one of the standard
Apama IAF plug-ins could be used instead; see “Codec IAF Plug-ins” on page 499 for more
information.

In order to facilitate quick development of new codec plug-ins, your distribution includes a codec
plug-in skeleton.

This file, called skeleton-codec.c, implements a complete codec plug-in that complies with the
Codec Plug-in Development Specification but where the entire custom message format
encoding/decoding functionality is missing. The file is located in the samples\iaf_plugin\c\
skeleton directory of your installation.

384 Connecting Apama Applications to External Components 10.11.3

16 C/C++ Codec Plug-in Development

In order to turn the skeleton into a fully operational message format specific codec plug-in, the
plug-in author needs to fill in the gapswithin the codec generic, decoding and encoding functions;
updateProperties, getLastErrorCodec, getStatus, sendNormalisedEvent, flushUpstream,
getLastErrorEncoder, addEventTransport, removeEventTransport, sendTransportEvent,
setSemanticMapper, flushDownstream, and getLastErrorDecoder. These must implement their
specified functionality in the context of the custommessage format. The information, constructor
and destructor functions are also likely to require adaptation.

The skeleton defines a structure, called EventCodec_Internals, to store all its private data, and this
structure is placed within the reserved field of the AP_EventCodec object created within the
constructor method. It is likely that this structure will need to be modified to contain additional
data that the adapter might require.

The distribution also contains a makefile (for usewithGNUMake onUNIX), aswell as aworkspace
file and dsp folder, for use with Microsoft's Visual Studio .NET on Microsoft Windows, for this
skeleton, which can be adapted to compile your codec plug-in and link it against any custom
libraries required.

Once a plug-in is built, it needs to be placed in a location where it can be picked up by the IAF.

This means that on Windows you either need to copy the .dll into the bin folder, or else place it
somewhere which is on your “path”, that is a location that is referenced by the PATH environment
variable.

On UNIX you either need to copy the .so into the lib directory, or else place it somewhere which
is on your “library path”, that is a directory that is referenced by the LD_LIBRARY_PATH environment
variable.

Connecting Apama Applications to External Components 10.11.3 385

16 C/C++ Codec Plug-in Development

386 Connecting Apama Applications to External Components 10.11.3

16 C/C++ Codec Plug-in Development

17 C/C++ Plug-in Support APIs

■ Logging from IAF plug-ins in C/C++ ... 388

■ Using the latency framework .. 388

Connecting Apama Applications to External Components 10.11.3 387

This section describes other programming interfaces providedwith the Apama software that may
be useful in implementing transport layer and codec plug-ins for the IAF.

Logging from IAF plug-ins in C/C++
This API provides amechanism for recording status and error logmessages from the IAF runtime
and any plug-ins loaded within it. Plug-in developers are encouraged to make use of the logging
API instead of custom logging solutions so that all the information may be logged together in the
same standard format and log file(s) used by other plug-ins and the IAF runtime.

The loggingAPI also allows control of logging verbosity, so that anymessages below the configured
logging level will not be written to the log. The logging level and file are initially set when an
adapter first starts up; see “Logging configuration (optional)” on page 362 for more information
about the logging configuration.

The C/C++ interface to the logging system is declared in the header file AP_Logger.h, which can
be found in the include directory of your Apama installation. All users of the logging system
should include this header file. The types and functions of interest to IAF plug-in writers are:

AP_LogLevel

AP_LogLevel_NULLmeans “no log level has been set” and should be interpreted by IAF and
plug-ins as “use the default logging level”.

AP_LogTrace

Along with the other logging functions below, AP_LogTrace is based on the standard C library
printf function. The message parameter may contain printf formatting characters that will
be filled in from the remaining arguments.

AP_LogDebug

AP_LogInfo

AP_LogWarn

AP_LogError

AP_LogCrit

The logging API offers other functions to set and query the current logging level and output file.
While these functions are available to plug-in code, it is recommended that plug-ins do not use
them. The IAF core is responsible for updating the state of the logging system in response to
adapter reconfiguration requests.

Using the latency framework
The latency frameworkAPI provides away tomeasure adapter latency by attaching high-resolution
timing data to events as they stream into, through, and out of the adapter. Developers can then
use these events to compute upstream, downstream, and round-trip latency numbers, including
latency across multiple adapters.

388 Connecting Apama Applications to External Components 10.11.3

17 C/C++ Plug-in Support APIs

The sendNormalisedEvent() and sendTransportEvent() functions contain an AP_TimestampSet
parameter that carries the microsecond-accurate timestamps that can be used to compute the
desired statistics.

C/C++ timestamp
A timestamp is an index-value pair. The index represents the point in the event processing chain
at which the timestampwas recorded, for example “upstream entry to semantic mapper” and the
value is a floating point number representing the time. The header file AP_TimestampSet.h defines
a set of standard indexes, but a customplug-in can define additional indexes for even finer-grained
measurements. When you add a custom index definition, be sure to preserve the correct order,
for example, an index denoting an “entry” point should be less than one denoting an “exit” point
from that component.

Timestamps are relative measurements and are meant to be compared only to other timestamps
in the same or similar processes on the same computer. Timestamps have no relationship to
real-world “wall time”.

C/C++ timestamp set
A timestamp set is the collection of timestamps that are associated with an event. The latency
frameworkAPI provides functions that developers can use to add, inspect, and remove timestamps
from an event's timestamp set.

C/C++ timestamp configuration object
Constructors and updateProperties()methods for transport and codec plug-ins take the following
argument: IAF_TimestampConfig.

A timestamp configuration object contains a set of fields that a plug-in can use to decide whether
to record and/or log timestamp information. Although timestamp configuration objects are passed
to all transport and codec plug-ins, it is up to the authors of a plug-ins towrite the code that makes
use of them.

See the IAF_TimestampConfig structure in theAPIReference for C++ (Doxygen) for detailed information
on the fields.

C/C++ latency framework API
The C/C++ interface for the latency framework is declared in the header file AP_TimestampSet.h.
Plug-ins using the latency framework should include this file and also include the IAF_
TimestampConfig.h header file, which declares the timestamp configuration object.

See the AP_TimestampSet_Functions structure in the API Reference for C++ (Doxygen) for detailed
information on the available functions.

Connecting Apama Applications to External Components 10.11.3 389

17 C/C++ Plug-in Support APIs

390 Connecting Apama Applications to External Components 10.11.3

17 C/C++ Plug-in Support APIs

18 Transport Plug-in Development in Java

■ The transport plug-in development specification for Java .. 392

■ Example ... 395

■ Getting started with Java transport layer plug-in development 395

Connecting Apama Applications to External Components 10.11.3 391

The transport layer is the front-end of the IAF. The transport layer's purpose is to abstract away
the differences between the programming interfaces exposed by different middleware message
sources and sinks. It consists of one or more custom plug-in libraries that extract downstream
messages from external message sources ready for delivery to the codec layer, and send Apama
events already encoded by the codec layer upstream to the external message sink. See “The
Integration Adapter Framework” on page 319 for a full introduction to transport plug-ins and the
IAF's architecture.

An adapter should send events to the correlator only after its start function is called and before
the stop function returns.

This section includes the transport plug-in development specification for Java and additional
information for developers of Java event transports. “C/C++ Transport Plug-in Development” on
page 369 provides analogous information about developing transport plug-ins using C/C++.

The transport plug-in development specification for
Java
A Java transport layer plug-in is implemented as a Java class extending AbstractEventTransport.
Typically this classwould be packaged up, togetherwith any supporting classes, as a JavaArchive
(.jar) file.

To comply with Apama's transport plug-in development specification, an event transport class
must satisfy two conditions:

1. It must have a constructor with the signature:
public AbstractEventTransport(

String name,
EventTransportProperty[] properties,
TimestampConfig timestampConfig)

throws TransportException

This will be used by the IAF to instantiate the plug-in.

2. Itmust extend the com.apama.iaf.plugin.AbstractEventTransport class, correctly implementing
all of its abstract methods.

(These methods are mostly directly equivalent to the functions with the same names in the C/C++
transport plug-in development specification.)

Note that all Java plug-ins are dependent on classes in ap-iaf-extension-api.jar, so this filemust
always be on the classpath during plug-in development. It is located in the lib directory of your
Apama installation.

Unless otherwise stated, Java classes referred to in this topic are members of the
com.apama.iaf.plugin package, whose classes and interfaces are contained in this .jar.

392 Connecting Apama Applications to External Components 10.11.3

18 Transport Plug-in Development in Java

Java transport functions to implement
HTML Javadoc documentation for AbstractEventTransport and related classes is provided as part
of the Apama documentation set. See the API Reference for Java (Javadoc) for detailed information
on the functions that a transport plug-in author needs to implement.

AbstractEventTransport is the constructor. A typical constructor would create a logger using the
plug-in name provided (see “Logging from IAF plug-ins in Java” on page 406), make a call to the
updatePropertiesmethod to deal with the initial property set passed in, and perform any other
initialization operations required for the particular transport being developed.

See “Communicationwith the codec layer” on page 393 for information on how the transport layer
communicates with the codec layer in both the upstream and downstream directions.

Communication with the codec layer
This section discusses how the transport layer communicates with the codec layer in both the
upstream and downstream directions.

Sending upstream messages received from a codec plug-in to a sink

When a codec plug-in has encoded an event ready for transmission by a transport plug-in it will
pass it on calling the transport's sendTransportEventmethod (as defined above). It is then up to
the transport plug-in to process the message (which will be of some type agreed by the codec and
transport plug-in authors), and send it on to the external sink it provides access to.

Note that there are no guarantees about which threads might call this method, so plug-in authors
will need to consider thread synchronization issues carefully.

If there is a problem sending the event on, the transport plug-in should throwa TransportException.

Sending downstream messages received from a source on to a codec plug-in

In order that messages can be easily sent on to a codec plug-in, an event transport will usually
have saved a reference to the event codec(s) it will be using before it establishes a connection to
the external source.

Typically an event transport will build up a list of registered codec plug-ins from the parameters
passed to the addEventDecoder and removeEventDecodermethods. If this is the case, the start
method of the plug-in can select one of these plug-ins on the basis of a plug-in property provided
in the configuration file (for example, <property name="decoderName" value="MyCodec"/>), and
saving it in an instance field (for example, currentDecoder).

Once the plug-in has a reference to the event codec (or codecs) it will use, whenever an external
message is received it should be passed on by calling the sendTransportEventmethod on the codec
plug-in (from the EventDecoder interface). See the API Reference for Java (Javadoc) for more
information on this method.

For example, part of the event processing code for a transport plug-in might be:

Connecting Apama Applications to External Components 10.11.3 393

18 Transport Plug-in Development in Java

MyCustomMessageType message = myCustomMessageSource.getNextMessage();
currentDecoder.sendTransportEvent(message, timestamps);

If an error occurs in the codec or Semantic Mapper layers preventing the message from being
converted into an Apama event, a CodecException or SemanticMapperException is thrown. Like all
per-message errors, these should be logged at Warning level, preferably with a full stack trace
logged at Debug level too. If necessary, transports may also send messages downstream to the
correlator to inform running monitors about the error.

When a transport sends a message to the codec via the sendTransportEventmethod, it passes an
Object reference and this allows custom types to be passed between the two plug-ins. However,
any custom types should be loaded via the main (parent) classloader, as each plug-in specified in
the IAF configuration file is loaded with its own classloader. Consider, for example, the following
three classes all loaded into a single jar file, MyAdapter.jar, which is used in the IAF configuration
file in the jarName attribute of the <transport> element:

MyTransport.class

MyCodec.class

MyContainer.class (the container class used in the call to sendTransportEvent)

When you load the transport and codec, a new classloader is used for each. This means both have
their own copy of the MyContainer class. When the transport creates an instance of MyContainer
and then passes it into the codec, the codec will recognize that the Object getClass().getName()
is MyContainer, but will not be able to cast it to this type as its MyContainer class is from a different
classloader.

To prevent this from happening, make sure that all shared classes are in a separate jar that is
specified by a <classpath> element. The shared classes are then loaded by the parent classloader.
This ensures that when a codec or transport references a shared class, they will both agree it is the
same class.

Note that any codec plug-in called by a Java transport plug-in must also be written in Java.

Transport exceptions
TransportException is the exception class that should be thrown by a transport plug-in whenever
the IAF calls one of its methods and an error prevents the method from successfully completing
— for example, a message that cannot be sent on to an external sink in sendTransportEvent, or a
serious problem that prevents the plug-in from initializing when start is called.

A TransportException object always has an associated message, which is a String explaining the
problem (thismay include information about another exception that caused the TransportException
to be thrown). There is also a code field that specifies the kind of error that occurred; the possible
codes are defined as constants in the TransportException class.

TransportException defines a number of constructors, to make it easy to set up the exception's
information quickly in different situations.

See the TransportException class in the API Reference for Java (Javadoc) for more information on
these constants and constructors.

394 Connecting Apama Applications to External Components 10.11.3

18 Transport Plug-in Development in Java

Logging
See “Logging from IAF plug-ins in Java” on page 406 for information about how transport plug-ins
should log error, status and debug information.

Example
As part of the IAF distribution, Apama includes the JFileTransport transport layer plug-in, in
the samples\iaf_plugin\java\simple\src directory.

The JFileTransport plug-in can read and write messages from and to a text file, and it is
recommended that developers examine this sample to see what a typical transport plug-in
implementation looks like.

See “IAF samples” on page 364 for more information about this sample. The section “The Basic
File IAF Adapter (FileTransport/JFileTransport)” on page 497 describes how the JFileTransport
plug-in can be used in practice.

Getting started with Java transport layer plug-in
development
Your distribution includes a complete “skeleton” implementation of a transport layer plug-in in
order to make development of new plug-ins faster.

This is located in the samples\iaf_plugin\java\skeleton\src directory of the installation, in a file
called SkeletonTransport.java. The SkeletonTransport class complies fully with the Transport
Plug-in Development Specification, but contains none of the custom message source/sink
functionality that would be present in a full transport plug-in.

The skeleton starts a background thread to do the actual message reading. This is required unless
the message source can asynchronously call back into the class that implements the plug-in.

The code contains TODO: comments indicating the main changes that need to be made to add
support for a specific message source/sink. These include:

Adding code to sendTransportEvent for sending an upstream event received from an event
codec on to the external message sink (if supported).

Adding code to the runmethod of the MessageProcessingThread for retrieving downstream
messages from the external source and forwarding them on to an event codec (if supported).

Alternatively, if the external message source works by making asynchronous calls using the
listener pattern, the processing thread should usually be removed, and much of the code can
be moved directly to the method called by the message source.

Adding code to start communicationswith the externalmessaging system in the startmethod,
and to ensure it is ceases in the stopmethod.

Connecting Apama Applications to External Components 10.11.3 395

18 Transport Plug-in Development in Java

Adding code to validate and save any new plug-in properties that are to be supported, in
updateProperties.

Adding code to initialize and clean up resources associated with the plug-in's operation. This
would usually be done in the start/stopmethods, in the background processing thread, or in
the updateProperties and cleanupmethods.

Depending on your requirements, it may also be necessary to make changes to the other methods
– addEventDecoder, removeEventDecoder, flushUpstream, flushDownstream, getStatus, and the
constructor.

The skeleton directory includes an Apache Ant build file called build.xml that provides a
convenient way to build .jar files of compiled classes from plug-in source files, ready for usewith
the IAF.

396 Connecting Apama Applications to External Components 10.11.3

18 Transport Plug-in Development in Java

19 Java Codec Plug-in Development

■ The codec plug-in development specification for Java ... 398

■ Java codec example ... 403

■ Getting started with Java codec layer plug-in development ... 403

Connecting Apama Applications to External Components 10.11.3 397

The codec layer is a layer of abstraction between the transport layer and the IAF's SemanticMapper.
It consists of one ormore plug-in libraries that performmessage encoding and decoding. Decoding
involves translating downstream messages retrieved by the transport layer into the standard
“normalized event” format on which the Semantic Mapper's rules run; encoding works in the
opposite direction, converting upstream normalized events into an appropriate format for transport
layer plug-ins to send on. Note that unlike the situation with C/C++, in Java codec plug-ins are
always both encoders and decoders. See “The Integration Adapter Framework” on page 319 for a
full introduction to codec plug-ins and the IAF's architecture.

This chapter includes the codec plug-in development specification for Java and additional
information for developers of Java event codecs. “C/C++ Codec Plug-in Development” on page 375
provides analogous information about developing codec plug-ins using C/C++.

Before developing a new codec plug-in, it is worth consideringwhether one of the standardApama
plug-ins could be used instead. “Codec IAF Plug-ins” on page 499 provides more information on
the standard IAF codec plug-ins: JStringCodec and JNullCodec. The JStringCodec plug-in codes
normalized events as formatted text strings. The JNullCodec plug-in is useful in situations where
it does not make sense to decouple the codec and transport layers, and allows transport plug-ins
to communicate with the Semantic Mapper directly using normalized events.

The codec plug-in development specification for Java
A Java codec layer plug-in is implemented as a Java class extending AbstractEventCodec. Typically
this class would be packaged up, together with any supporting classes, as a Java Archive (.jar)
file.

To comply with Apama's codec plug-in development specification, an event codec class must
satisfy two conditions:

1. It must have a constructor with the signature:
public AbstractEventCodec(

String name,
EventCodecProperty[] properties,
TimestampConfig timestampConfig)

throws CodecException

This will be used by the IAF to instantiate the plug-in.

2. It must extend the com.apama.iaf.plugin.AbstractEventCodec class, correctly implementing
all of its abstract methods.

(These methods are mostly directly equivalent to the functions with the same names in the C/C++
codec plug-in development specification.)

Note that all Java plug-ins are dependent on classes in ap-iaf-extension-api.jar, so this filemust
always be on the classpath during plug-in development. It is located in the Apama installation's
lib directory.

Unless otherwise stated, Java classes referred to in this chapter are members of the
com.apama.iaf.plugin package, whose classes and interfaces are contained in this .jar.

398 Connecting Apama Applications to External Components 10.11.3

19 Java Codec Plug-in Development

Java codec functions to implement
HTML Javadoc documentation for AbstractEventCodec and related classes is provided as part of
the Apama documentation set. See the API Reference for Java (Javadoc) for detailed information on
the functions that a codec plug-in author needs to implement.

AbstractEventCodec is the constructor. A typical constructor would create a logger using the
plug-in name provided (see “Logging from IAF plug-ins in Java” on page 406), make a call to the
updatePropertiesmethod to deal with the initial property set passed in, and perform any other
initialization operations required for the particular event codec being developed.

Note that unlike event transports, codec plug-ins do not have start and stop methods.

See “Communication with other layers” on page 399 for information on how the codec layer
communicates with the transport layer and Semantic Mapper in upstream and downstream
directions.

See also “Working with normalized events” on page 401 for help working with NormalisedEvent
objects.

Communication with other layers
This section discusses how the codec layer communicates with the transport layer and Semantic
Mapper in upstream and downstream directions.

Sending upstream messages received from the Semantic Mapper to a transport
plug-in

When the Semantic Mapper produces normalized events, it sends them on to the codec layer by
calling the codec plug-ins' sendNormalisedEventmethods (as defined above). The event codecmust
then encode the normalized event for transmission by the transport layer.

In order to send messages upstream to an event transport, a codec plug-in must have a reference
to the transport plug-in object. Typically, an event codec does this by building up a map of
registered transport plug-ins from the parameters passed to the addEventTransport and
removeEventTransportmethods. It might then use a property provided in the configuration file
(for example, <property name="transportName" value="MyTransport"/>) to determinewhich event
transport to use when the sendNormalisedEventmethod is called.

Alternatively, if this transport plug-in will only ever be used in an adapter with just one codec
plug-in, the EventTransport object could be stored in an instance field when it is provided to the
addEventTransportmethod.

Once the plug-in has a reference to the event transport (or transports) it will use, it can pass on
normalized events it has encoded into transport messages by calling the transport plug-in
sendTransportEventmethod. See the EventTransport interface in theAPI Reference for Java (Javadoc)
for more information on this method.

For example, the implementation of the event codec's sendNormalisedEvent could look something
like this:

Connecting Apama Applications to External Components 10.11.3 399

19 Java Codec Plug-in Development

// Select EventTransport using saved plug-in property value
EventTransport transport = eventTransports.get(currentTransportName);
// Encode message
MyCustomMessageType message = myEncodeMessage(event);
// Send to Transport layer plug-in
transport.sendTransportEvent(message, timestamps);

If an error occurs in the transport layer, a TransportException is thrown. Typically such exceptions
do not need to be caught by the codec plug-in, unless the codec plug-in is able to somehow deal
with the problem.

A CodecException should be thrown if there is an error encoding the normalized event.

Note that there are no guarantees aboutwhich threadsmight call the sendNormalisedEventmethod,
so plug-in authors will need to consider any thread synchronization issues arising from use of
shared data structures.

Any transport plug-in called by a Java codec plug-in must also be written in Java.

Sending downstream messages received from a transport plug-in to the Semantic
Mapper

When a transport plug-in configured to work with the event codec receives a messages from its
external message source, it will pass it on to the codec plug-in by calling the sendTransportEvent
method (as defined above). It is then up to the codec plug-in to decode themessage fromwhatever
custom format is agreed between the transport and codec plug-ins into a standard normalized
event that can be passed on to the Semantic Mapper.

When the message has been decoded, it should be sent to the Semantic Mapper using its
sendNormalisedEventmethod. See the SemanticMapper interface in theAPI Reference for Java (Javadoc)
for more information on this method.

For example, the implementation of the event codec's sendTransportEvent could look something
like this:
// (Assume there's an instance field: SemanticMapper semanticMapper)
// Decode message
NormalisedEvent normalisedEvent = myDecodeMessage(event);
// Send to Transport layer plug-in
semanticMapper.sendNormalisedEvent(normalisedEvent, timestamps);

If an error occurs in the Semantic Mapper, a SemanticMapperException is thrown. Typically such
exceptions do not need to be caught by the codec plug-in, unless the codec plug-in is able to
somehow deal with the problem.

A CodecException should be thrown if there is an error decoding the normalized event.

Java codec exceptions
CodecException is the exception class that should be thrown by a codec plug-in whenever the one
of its methods is called and an error prevents the method from successfully completing — for
example, a message that cannot be encoded or decoded because it has an invalid format.

400 Connecting Apama Applications to External Components 10.11.3

19 Java Codec Plug-in Development

A CodecException object always has an associated message, which is a String explaining the problem
(this may include information about another exception that caused the CodecException to be
thrown). There is also a code field that specifies the kind of error that occurred; the possible codes
are defined as constants in the CodecException class.

Like the TransportException object, CodecException defines a number of constructors, to make it
easy to set up the exception's information quickly in different situations.

See the CodecException class in the API Reference for Java (Javadoc) for more information on these
constants and constructors.

Semantic Mapper exceptions
Codec plug-ins should never need to construct or throw SemanticMapperException objects, but
they need to be able to catch them if they are thrown from the SemanticMapper.sendNormalisedEvent
method when it is called by the event codec.

SemanticMapperException has exactly the same set of constructors as the CodecException class
described above. The only significant difference is the set of error codes.

See the SemanticMapperException class in the API Reference for Java (Javadoc) for more information
on the constructors and error codes.

Logging
See “Logging from IAF plug-ins in Java” on page 406 for information about how codec plug-ins
should log error, status and debug information.

Working with normalized events
The function of a decoding codec plug-in is to convert incoming messages into a standard
normalized event format that can be processed by the Semantic Mapper. Events sent upstream to
an encoding codec plug-in are provided to the plug-in in this same format.

Normalized events are essentially dictionaries of name-value pairs, where the names and values
are both character strings. Each name-value pair nominally represents the name and content of a
single field from an event, but users of the data structure are free to invent customnaming schemes
to represent more complex event structures. Names must be unique within a given event. Values
may be empty or null.

Some examples of normalized event field values for different types are:

string "a string"

integer "1"

float "2.0"

decimal "100.0d"

sequence<boolean> "[true,false]"

Connecting Apama Applications to External Components 10.11.3 401

19 Java Codec Plug-in Development

dictionary<float,integer> "{2.3:2,4.3:5}"

SomeEvent "SomeEvent(12)"

Note:
When assigning names to fields in normalized events, keep inmind that the fields and transport
attributes for event mapping conditions and event mapping rules both use a list of fields
delimited by spaces or commas. This means, for example that <id fields="Exchange EX,foo"
test="==" value="LSE"/>will successfully match a field called Exchange, EX or foo, but not a
field called Exchange EX,foo.While fieldswith spaces or commas in their namesmay be included
in a payload dictionary in upstreamor downstreamdirections, they cannot be referenced directly
in mapping or id rules.

To construct strings for the normalized event fields representing container types (dictionaries,
sequences, or nested events), use the event parser/builder found in the ap-util.jar file, which is
located in the Apama installation's lib directory The following examples show how to add a
sequence and a dictionary to a normalized event (note the escape character (\) used in order to
insert a quotation mark into a string).
List<String> list = new ArrayList<String>();
list.add("abc");
list.add("de\"f");
Map<String,String> map = new HashMap<String,String>();
map.put("key1", "value1");
map.put("key\"{}2", "value\"{}2");
final SequenceFieldType STRING_SEQUENCE_FIELD_TYPE =

new SequenceFieldType(StringFieldType.TYPE);
final DictionaryFieldType STRING_DICT_FIELD_TYPE =

new DictionaryFieldType(StringFieldType.TYPE, StringFieldType.TYPE);
NormalisedEvent event = new NormalisedEvent();
event.add("mySequenceField",

STRING_SEQUENCE_FIELD_TYPE.format(list));
event.add("myDictionaryField", STRING_DICT_FIELD_TYPE.format(map));

The programming interface for constructing and using normalized events ismade up of three Java
classes:

NormalisedEvent

The NormalisedEvent class represents a single normalized event. This class themost important
part of the interface, and encapsulates the data and operations that can be performed on a
single normalized event.

Normalized events are not thread-safe. If your code will be accessing the same normalized
event object (or associated iterators) from multiple threads, you must implement your own
thread synchronization to prevent concurrent modification.

A public zero-argument constructor is provided for creation of new (initially empty)
NormalisedEvent objects.

NormalisedEventIterator

Several of the NormalisedEventmethods return an instance of the NormalisedEventIterator
class, which provides a way to step though the name-value pairs making up the normalized
event, forwards or backwards.

402 Connecting Apama Applications to External Components 10.11.3

19 Java Codec Plug-in Development

There is no public constructor. Iterators are created and returned only by NormalisedEvent
methods.

NormalisedEventException

Any errors encountered by NormalisedEvent result in instances of NormalisedEventException
being thrown.

See the API Reference for Java (Javadoc) for detailed information on these classes.

Java codec example
As part of the IAF distribution Apama includes the JStringCodec codec layer plug-in, in the
samples\iaf_plugin\java\simple\src directory.

The JStringCodec plug-in converts between normalized events and a text string representation
that can be customized using plug-in configuration properties.

Developers are encouraged to explore this sample to see what a typical codec plug-in
implementation looks like.

See “IAF samples” on page 364 for more information about this sample. The section “The String
codec IAF plug-in” on page 500 describes how the JStringCodec plug-in can be used in practice.

Getting started with Java codec layer plug-in
development
Your distribution includes a complete “skeleton” implementation of a codec layer plug-in in order
to make development of new plug-ins faster.

This is located in the samples\iaf_plugin\java\skeleton\src directory of the installation, in a file
called SkeletonCodec.java. The SkeletonCodec class complies fully with the Codec Plug-in
Development Specification, but contains none of the custom encoding and decoding functionality
that would be present in a full codec plug-in.

The code contains TODO: comments indicating the main changes that need to be made to develop
a useful plug-in. These include:

Adding code to sendTransportEvent to decode a message received from the transport layer
into a normalized event (if supported).

Adding code to sendNormalisedEvent to encode amessage received from the SemanticMapper
transport into a message that can be sent on by the transport layer (if supported).

Adding code to validate and save any new plug-in properties that are to be supported, in
updateProperties.

Adding code to initialize and clean up resources associated with the plug-in's operation. This
would usually be done in the updateProperties and cleanupmethods.

Connecting Apama Applications to External Components 10.11.3 403

19 Java Codec Plug-in Development

Depending on your requirements, it may also be necessary to make changes to the other main
methods – addEventTransport, removeEventTransport, flushUpstream, flushDownstream, getStatus,
and the constructor.

The skeleton directory includes an Apache Ant build file called build.xml that provides a
convenient way to build .jar files of compiled classes from plug-in source files, ready for usewith
the IAF.

404 Connecting Apama Applications to External Components 10.11.3

19 Java Codec Plug-in Development

20 Plug-in Support APIs for Java

■ Logging from IAF plug-ins in Java .. 406

■ Using the latency framework .. 407

Connecting Apama Applications to External Components 10.11.3 405

This section describes other programming interfaces providedwith the Apama software that may
be useful in implementing transport layer and codec plug-ins for the IAF.

Logging from IAF plug-ins in Java
This API provides amechanism for recording status and error logmessages from the IAF runtime
and any plug-ins loaded within it. Plug-in developers are encouraged to make use of the logging
API instead of custom logging solutions so that all the information may be logged together in the
same standard format and log file(s) used by other plug-ins and the IAF runtime.

The loggingAPI also allows control of logging verbosity, so that anymessages below the configured
logging level will not be written to the log. The logging level and file are initially set when an
adapter first starts up – see “Logging configuration (optional)” on page 362 for more information
about the logging configuration.

The Java logging API is based around the Logger class.

The recommendedway of using the Logger class is to have a private final com.apama.util.Logger
variable, and then create an instance in the transport or codec's constructor based on the plug-in
name, such as the following:
private final Logger logger;
public MyTransport(String name, ...)
{ super(...);

logger = Logger.getLogger(name);
}

The Logger class supports the following logging levels:

FORCE

CRIT

FATAL

ERROR

WARN

INFO

DEBUG

TRACE

It is recommended that you do not use the FATAL or CRIT log levels provided by the Logger class,
which are present only for historical reasons. It is better to use ERROR for all error conditions
regardless of how fatal they are, and INFO for informationalmessages. By default, the JMon classes
log at WARN level. See "Setting correlator and plug-in log files and log levels in a YAML configuration
file" inDeploying and Managing Apama Applications for information about configuring log levels in
the correlator.

For each level, there are three main methods. For example, for logging at the DEBUG level, here are
the three main methods:

406 Connecting Apama Applications to External Components 10.11.3

20 Plug-in Support APIs for Java

logger.debug(String)— Logs a message, if this log level is currently enabled.

logger.debug(String, Throwable)— Logs the stack trace and message of a caught exception
together with a high-level description of the problem. Apama strongly recommend logging
exceptions like this to assist with debugging in the event of problems.

logger.debugEnabled()—Determineswhethermessages at this log level are currently enabled
(this depends on the current IAF log level, which may be changed dynamically). Apama
strongly recommend checking this method's result (particularly for DEBUGmessages) before
logging messages where constructing the message string may be costly, for example:
if (logger.debugEnabled())
logger.debug("A huge message was received, and the string

representation of it is: "+thing.toString()+
" and here is some other useful info: "+foo+", "+bar);

Note that there is no point using the Enabled()methods if the log message is a simple string (or
string plus exception), such as:
logger.debug("The operation completed with an error: ", exception);

Tomake it easier to diagnose any errors that may occur, Apama recommends one of the following
methods to log the application's stack trace:

errorWithDebugStackTrace(java.lang.String msg, java.lang.Throwable ex)— Logs the
specified message at the ERROR level followed by the exception's message string, and then logs
the exception's stack trace at the DEBUG level.

warnWithDebugStackTrace(java.lang.String msg, java.lang.Throwable ex)— Logs the
specified message at the WARN level followed by the exception's message string, and then logs
the exception's stack trace at the DEBUG level.

See the API Reference for Java (Javadoc) for more information about the Logger class.

Using the latency framework
The latency frameworkAPI provides away tomeasure adapter latency by attaching high-resolution
timing data to events as they stream into, through, and out of the adapter. Developers can then
use these events to compute upstream, downstream, and round-trip latency numbers, including
latency across multiple adapters.

The sendNormalisedEvent() and sendTransportEvent()methods contain a TimestampSetparameter
that carries themicrosecond-accurate timestamps that can be used to compute the desired statistics.

Javadoc documentation for com.apama.util.TimestampSet and com.apama.util.TimestampConfig
classes is provided as part of the Apama documentation set. See theAPI Reference for Java (Javadoc).

Java timestamp
A timestamp is an index-value pair. The index represents the point in the event processing chain
at which the timestampwas recorded, for example “upstream entry to semantic mapper” and the
value is a floating point number representing the time. The TimestampSet class defines a set of

Connecting Apama Applications to External Components 10.11.3 407

20 Plug-in Support APIs for Java

standard indexes but a custom plug-in can define additional indexes for even finer-grained
measurements. When you add a custom index definition, be sure to preserve the correct order,
for example, an index denoting an “entry” point should be less than an one denoting an “exit”
point from that component.

Timestamps are relative measurements and are meant to be compared only to other timestamps
in the same or similar processes on the same computer.

Java timestamp set
A timestamp set is the collection of timestamps that are associated with an event. The latency
frameworkAPI provides functions that developers can use to add, inspect, and remove timestamps
from an event's timestamp set.

The timestamp set is represented as a dictionary of integer-float pairs, where the integer index
refers to the location at which the timestampwas added and the floating-point time gives the time
at which an event was there.

Java timestamp configuration object
The constructors and updateProperties()methods for transport and codec plug-ins take this
additional argument: TimestampConfig.

A timestamp configuration object contains a set of fields that a plug-in can use to decide whether
to record and/or log timestamp information. See the API Reference for Java (Javadoc) for more
information on the fields of the TimestampConfig class.

Java latency framework API
The Java interface for the latency framework is declared in the header file
com.apama.util.TimestampSet class.

See the TimestampSet class in the API Reference for Java (Javadoc) for detailed information on the
available functions.

408 Connecting Apama Applications to External Components 10.11.3

20 Plug-in Support APIs for Java

21 Monitoring Adapter Status

■ IAFStatusManager ... 411

■ Application interface ... 411

■ Returning information from the getStatus method .. 412

■ Connections and other custom properties ... 413

■ Asynchronously notifying IAFStatusManager of connection changes 414

■ StatusSupport .. 417

■ DataView support ... 420

Connecting Apama Applications to External Components 10.11.3 409

Status information is available between the correlator and an adapter. When developing an IAF
adapter, the adapter author can provide the ability to make use of this status information. Basic
information, such as whether an adapter is up or down, is available using a standard Apama
monitor. Other information, such as the number of connections an adapter has, can be provided
by using the getStatus()method in an adapter's transport and codec. Optionally, adapter authors
can also add code to the adapter's service monitors to send and receive specific status information
that application developers can then use when they write Apama applications that connect to the
adapters.

Apama provides the following two mechanisms for handling IAF Adapter status information:

IAFStatusManager — The IAFStatusManager manages the connection status and other status
information from the adapter to the correlator. In order to retrieve adapter status information,
the IAFStatusManager needs to be injected into the correlator and the adapter author needs
to add a small amount of code to the adapter. Application authors can then make use of status
information available from the IAFStatusManager.

For information on using the IAFStatusManager, see “IAFStatusManager” on page 411

StatusSupport — StatusSupport is a generic interface (or contract) between an Apama
application and an adapter's service monitors. This interface provides a way to provide an
application with a similar view of all the status information available frommultiple adapters.
In order to use the StatusSupport interface, an adapter author writes code in the adapter's
service monitors that send or receive specific StatusSupport events. In turn, the application
author writes code to implement the desired behavior for handling the StatusSupport events.

Using the StatusSupport interface is optional. For more information on using this interface,
see “StatusSupport” on page 417.

410 Connecting Apama Applications to External Components 10.11.3

21 Monitoring Adapter Status

IAFStatusManager
The IAFStatusManager translates events from the adapter into simple status events for applications
to consume. The monitor, IAFStatusManager.mon is found in the Apama installation's adapters\
monitors directory. In order to use the monitor:

The adapter author is required to return information about the adapter's open connections in
the adapter's getStatusmethod,which is called every few secondswhen the IAFStatusManager
service monitor polls the IAF for status. Adapters written in Java must return an
ExtendedTransportStatus or ExtendedCodecStatus object from getStatus(); adapters written
in C++ must return AP_EventTransportStatus or AP_ExtendedCodecStatus.

The adapter may optionally also send notifications about a connection as soon as it is opened
or closed, by sending a normalized event representation of the AdapterConnectionOpened or
AdapterConnectionClosedevents to the correlator. This simply allows the correlator to find out
about connectivity change more quickly than is the case if it needs to wait for the next status
poll.

The IAFStatusManager has the following interfaces:

An application interface to communicate with the consumers of the adapter status information
— usually adapter service monitors.

An IAF adapter interface is optional and can be used by adapter authors to issue connection
notifications.

Application interface
The IAFStatusManager.monfile defines the event interface between it and a consumer of an adapter's
status information, which is usually an adapter's service monitor. The application interface can
be used to communicate status information to both the adapter's servicemonitors aswell as Apama
applications.

The application interface events are either input events or output events. Input events are sent
from a consumer of adapter status information to the IAFStatusManager. Output events are sent
from the IAFStatusManager to a consumer of adapter status information.

Input events

The IAFStatusManager is a subscription-based interface. This means that a consumer of adapter
status information (such as an application service monitor) needs to send the input events listed
below to register or deregister as a consumer for adapter status information.

The IAFStatusManager defines the following input events:

The AdapterStatusRegister event is sent by a client that is interested in receiving status events
from the specified codec and transport. The fields of this event uniquely identify a subscription.

Connecting Apama Applications to External Components 10.11.3 411

21 Monitoring Adapter Status

Once a subscription is made to the IAFStatusManager, the IAFStatusManager periodically
receives information from the adapter and begins sending status information to the registered
consumer in the form of output events (see below).

The AdapterStatusDeregister event is sent by a client that wants to remove its subscription
for status events.

See theAPI Reference for EPL (ApamaDoc) for more details on the IAFStatusManager and the above
events.

Output events

Once a consumer of status information (such as an application service monitor) is registered with
the IAFStatusManager, it begins to receive status information in the form of IAFStatusManager
output events. Output events include connection information, adapter availability, and any custom
information put into the dictionary by the transport or codec. For more information about adding
custom information, see “Connections and other custom properties” on page 413.

The IAFStatusManager defines the following output events:

The AdapterUp event is used to notify registered clients that the specified adapter process is
running.

The AdapterError event is used to notify registered clients that there is a problem with the
subscription.

The ConnectionOpened event is used to notify registered clients that a connection between the
adapter and the external system it communicates with has successfully been established.

The ConnectionClosed event is used to notify registered clients that a connection between the
adapter and the external system it communicates with has been closed.

See theAPI Reference for EPL (ApamaDoc) for more details on the IAFStatusManager and the above
events.

Returning information from the getStatus method
The adapter's transport and codec getStatusmethods periodically update status information. The
transport and codec send this information to the IAFStatusManager.

To take advantage of the IAFStatusManager for an adapter written in Java, the adapter author
should implement the getStatusmethod so that it returns an ExtendedTransportStatus or
ExtendedCodecStatus object. These objects include a Properties parameter, statusInfo, which
contains custom information about the adapter. See the API Reference for Java (Javadoc) for detailed
information on the ExtendedTransportStatus and ExtendedCodecStatus classes.

For adapters written in C or C++, the adapter author should implement the getStatus function to
include the statusDictionary in an AP_EventTransportStatus or AP_EventCodecStatus structure.
See the API Reference for C++ (Doxygen) for detailed information on the AP_EventTransportStatus
and AP_EventCodecStatus structures.

412 Connecting Apama Applications to External Components 10.11.3

21 Monitoring Adapter Status

The IAFStatusManager then forwards the information to registered consumers of that transport
or codec's status information in the form of a dictionary added to the AdapterUp event.

Example

In the following example, the custom status information for VERSION and CONNECTION is included
in the information returned by the getStatusmethod:
public static final String TRANSPORT_VERSION="1";

protected long connGeneration;
...
public TransportStatus getStatus()
{

Properties properties=new Properties();
properties.setProperty("VERSION", TRANSPORT_VERSION);
if(market!=null)
{

properties.setProperty("CONNECTION",
String.valueOf(connGeneration));

}
return new ExtendedTransportStatus("OK", numReceived, numSent,

properties);
}

For more information on specifying the CONNECTION property, see “Asynchronously notifying
IAFStatusManager of connection changes” on page 414.

Connections and other custom properties
An adapter may deal with no connections, a single connection, or an arbitrary number of
connections (for example, if it is a server socket that accepts clients connecting to it); an adapter
may also deal with a set number of connections. In any case, an identifier needs to be assigned to
each connection. A connection may be broken and then reconnected, with either the same or
different identifier. It is useful to be able to detect a connection that has been dropped and then
reconnected even if it has the same identifier. To facilitate this, a “generation” identifier can be
associated with each connection identifier. While typically this generation identifier will be a
number that is incremented, extra information may be contained in it.

Monitors can therefore detect when a connection has been reconnected; at this point any logon
procedure needs to be repeated as the generation identifier has changed.

The state of all connections should be supplied in the statusDictionary field of the status struct
in C/C++, or the statusInfo field of the ExtendedCodecStatus or ExtendedTransportStatus in Java.

Alongwith any other custom information, the adapter author can include connection information
here. This will be passed to the correlator in event form and the IAFStatusManager will
automatically attempt to pull out connection information from this data structure. If there is a
single connection, a key should be supplied called CONNECTION. The value will be the generation
identifier, typically a number. If the generation identifier changes, the IAFStatusManager will
assume the connection has been dropped and reestablished, and will send appropriate events to
the consumer of the status events.

Connecting Apama Applications to External Components 10.11.3 413

21 Monitoring Adapter Status

If there aremultiple connections, a key for each one should be supplied in the form CONNECTION_<id>
to distinguish the different connections. Each one will also have a generation identifier associated
with it. The same rules apply with the generation identifier as with a single connection.

In either case, if the connection is up, the property should be included, and if the connection is
down, the property should not be included. This allows monitors to recover the state of what
connections are made after losing connection to the IAF, and to determine when connections are
opened or closed by polling.

The following Java example shows a simple adapter that reports the status of a single connection.
private long connectionGeneration = System.currentTimeMillis();
public TransportStatus getStatus()
{ Properties properties = new Properties();
properties.setProperty("VERSION", "MyTransport_v1.0");
properties.put("CONFIG_VERSION", "1");

if (connected)
{

properties.setProperty("CONNECTION",
String.valueOf(connectionGeneration));

}
return new ExtendedTransportStatus("OK", totalReceived,

totalSent, properties);
}

The following Java example demonstrates usage with multiple connections, iterating through a
collection of MyConnection objects.
public TransportStatus getStatus()
{ Properties properties = new Properties();
properties.put("VERSION", "MyTransport_v1.0");
properties.put("CONFIG_VERSION", "1");
for (MyConnection con : connections.values())
{

if (!con.isClosed())
{

properties.put("CONNECTION_" + con.getId(), con.getGeneration());
}

}
return new ExtendedTransportStatus(statusMessage, totalReceived,

totalSent, properties);
}

Asynchronously notifying IAFStatusManager of
connection changes
In addition to returning status information in response to a poll from the IAFStatusManager, an
adapter may also send out events asynchronously when a connection is opened or closed.

This is done by creating and sending a NormalisedEvent object from the transport or codec to the
semantic mapper. The NormalisedEvent object has special fields that allow for automatic mapping
to an Apama event type — either AdapterConnectionOpened or AdapterConnectionClosed. The

414 Connecting Apama Applications to External Components 10.11.3

21 Monitoring Adapter Status

AdapterConnectionOpened and AdapterConnectionClosed events are then sent through the correlator
to the IAFStatusManager.

The NormalisedEventmust have the following fields:

Field valueField name

No value (empty string). This will either represent a
connection opened or connection closed and be

AdapterConnectionOpenEvent or
AdapterConnectionClosedEvent

translated into AdapterConnectionOpened or
AdapterConnectionClosed events respectively for the
IAFStatusManager to consume.

Name of codec.codecName

Name of transport.transportName

No value (empty string) if there is only one
connection. If there is more than one connection, this

connectionName

should contain CONNECTION_<id> andone event should
be sent for every connection the adapter is concerned
with.

Connection generation identifier. This identifies a
successful connection attemptwith a connectionName.

connectionGeneration

If the connection fails, then is successfully connected
again, this should change. This is usually a number
that is incremented.

This connection information should have a direct correlation to the connection information sent
in the getStatus implementation. Note that if the transport deals with only a single connection at
a time, the connectionNamewill be "" (the empty string) instead of CONNECTION, as it is in the
getStatus implementation.

The following is an example in Java of sending a NormalisedEvent that provides status information.
protected void sendAdapterConnectionStatusChangeNotification(boolean open,

String reason, TimestampSet tss)
{
if(decoder==null) return;
NormalisedEvent ne=new NormalisedEvent();
ne.add("codecName", codecName);
ne.add("transportName", transportName);
if(reason==null)
{

reason="";
}
if(open)
{

ne.add("AdapterConnectionOpenEvent", reason);
}
else
{

ne.add("AdapterConnectionClosedEvent", reason);

Connecting Apama Applications to External Components 10.11.3 415

21 Monitoring Adapter Status

}
ne.add("connectionGeneration", String.valueOf(connGeneration));
ne.add("connectionName", "");
try
{

decoder.sendTransportEvent(ne, tss);
}
catch (CodecException e)
{

logger.error("Could not send message due to Codec error: ", e);
}
catch (SemanticMapperException e)
{

logger.error("Could not send message due to Semantic Mapper
error: ", e);

}
}

Note:
When using these events, the (J)NullCodecmust be used, unless youwrite a codec that handles
these and passes them on to the correlator. For example, the XMLCodec by default will not
forward these events to the semantic mapper. If you want to use the XMLCodec, you need to
use the (J)NullCodec as the codec to send these particular events.

For more information on the implicit rules that the semantic mapper uses to automatically map
the objects to AdapterConnectionOpened and AdapterConnectionClosed events, see “Mapping
AdapterConnectionClosed and AdapterConnectionOpened events” on page 416.

Mapping AdapterConnectionClosed and
AdapterConnectionOpened events
Asdescribed in “Asynchronously notifying IAFStatusManager of connection changes” on page 414,
the semantic mapper contains implicit rules to map NormalisedEvent objects that contain special
fields to AdapterConnectionClosed and AdapterConnectionOpened events. This means you do not
need to add mapping rules to your adapter's configuration file. These implicit rules are:
<event name="AdapterConnectionClosed"

package="com.apama.adapters"
direction="downstream"
breakDownstream="false">

<id-rules>
<downstream>

<id fields="codecName,
transportName,
connectionName,
connectionGeneration"

test="exists"/>
<id fields="AdapterConnectionClosedEvent"

test="exists"/>
</downstream>

</id-rules>
<mapping-rules>

<map apama="codecName"
transport="codecName"
type="string" default=""/>

416 Connecting Apama Applications to External Components 10.11.3

21 Monitoring Adapter Status

<map apama="transportName"
transport="transportName"
type="string" default=""/>

<map apama="connectionName"
transport="connectionName"
type="string" default=""/>

<map apama="connectionGeneration"
transport="connectionGeneration"
type="string" default=""/>

</mapping-rules>
</event>
<event name="AdapterConnectionOpened"

package="com.apama.adapters"
direction="downstream"
breakDownstream="false">

<id-rules>
<downstream>

<id fields="codecName,
transportName,
connectionName,
connectionGeneration"

test="exists"/>
<id fields="AdapterConnectionOpenEvent"

test="exists"/>
</downstream>

</id-rules>
<mapping-rules>

<map apama="codecName"
transport="codecName"
type="string" default=""/>

<map apama="transportName"
transport="transportName"
type="string" default=""/>

<map apama="connectionName"
transport="connectionName"
type="string" default=""/>

<map apama="connectionGeneration"
transport="connectionGeneration"
type="string" default=""/>

</mapping-rules>
</event>

StatusSupport
Consumers of the IAFStatusManager events are typically the adapter service monitors. In some
cases it may desirable for an Apama application to have a more generic view of components and
their status information so that getting status informationwill look the same across all components
in a system, regardless of component type. For example, in addition to the information provided
by the IAFStatusManager such as whether the adapter is up or connected, it may be useful to
provide confirmation that the adapter has successfully logged in to an external systemor amessage
that the external system is down.

Apama provides an interface called the StatusSupport event interface to help define this. It allows
applications (EPL code) to see state from service monitors such as the adapter service monitors.
In order to implement this behavior, adapter authors add code to the adapter service monitors to
handle the various StatusSupport events. Developers of Apama applications can then add code

Connecting Apama Applications to External Components 10.11.3 417

21 Monitoring Adapter Status

to take appropriate actions for the StatusSupport events to their applications that use the adapters.
In this way, an application can act as a “health monitor” and be notified when a component is
down or what its status is at any given time.

The StatusSupport events are described in “StatusSupport events” on page 418.

The StatusSupport event interface is a subscription based interface, so consumers of this information
will need to subscribe before receiving status information. The adapter service monitors need to
reference count the status subscribers, so they do not stop sending status information if there are
any interested consumers left. A subscription will only be removed when the call to remove the
last one is made.

StatusSupport events
The StatusSupport event interface is defined in the StatusSupport.mon file, which is found in the
monitors directory of the Apama installation (note, this is not the same directory as adapters\
monitors).

All of the StatusSupport events contain the following fields:

serviceID— The service ID to subscribe to, a blank in this field targets all services

object— The object to request status of - this may include:

“Connection" - whether connected or not

"MarketState" - a market may be "Open", "Closed", or other states

subServiceID—The subService ID to subscribe to. Some servicesmay expose several services.
The interpretation of this string is adapter-specific.

connection—The connection to subscribe to. Some services may expose several services. The
interpretation of this string is adapter-specific.

The StatusSupport interface defines the following events:

SubscribeStatus— This event is sent to the service monitor to subscribe to status.
event SubscribeStatus {

string serviceID;
string object;
string subServiceID;
string connection;

}

UnsubscribeStatus—
event UnsubscribeStatus {

string serviceID;
string object;
string subServiceID;
string connection;

}

Status—

418 Connecting Apama Applications to External Components 10.11.3

21 Monitoring Adapter Status

event Status {
string serviceID;
string object;
string subServiceID;
string connection;
string description;
sequence<string> summaries;
boolean available;
wildcard dictionary <string, string> extraParams;

}

The additional fields for the Status event type are:

description—A free-form text string giving a description of the status.

summaries— The status of the object requested. This will be a well recognized sequence of
words - for example, a financial market's "MarketState" may be "Open", "Closed", "PreOpen",
etc. A Connection may be "Connected", "Disconnected", "Disconnected LoginFailed",
"Disconnected TimedOut", etc. There should be at least one entry in the sequence.

available— true if the object is "available" - the exactmeaning is adapter specific; for example,
connected, open for general orders, etc.

extraParams— Extra parameters that do not map into any of the above. Convention is that
keys are in title case, for example, "Username", "CloseTime", etc.

A Status event does not denote a change of state, merely what the current state is— in particular,
one will be sent out after every SubscribeStatus request.

Any adapter specific information that the application needs to supply or be supplied can be passed
in the extraParams dictionary — these are free-form (though there are conventions on the keys,
see below).

StatusError—
event StatusError {

string serviceID;
string object;
string subServiceID;
string connection;
string description;
boolean failed;

}

The additional field for this event type is:

failed—Whether the subscription has been terminated. Any subscribers will need to send a
new SubscribeStatus request after this.

Note that the purpose of the StatusError event is to report a problem in the delivery of status
information, not to report an “error” status. A StatusError should be sent when the service is
unable to deliver status for some reason. For example, reports on the status of an adapter transport's
connection to a downstream server cannot be sent if the correlator has lost its connection to the
adapter — in this case the service would be justified in sending a StatusError event for the
downstream connection status. However, in the same situation the service should continue to
send normal Status events for the correlator-adapter connection status, as this status is known.

Connecting Apama Applications to External Components 10.11.3 419

21 Monitoring Adapter Status

The available flag in these Status events would of course be set to false to indicate that the
connection is down.

If the failed flag in a StatusError event is true, this indicates that the failure in status reporting
is permanent and any active status subscriptions will have been cancelled and receivers will need
to re-subscribe if they wish to receive further status updates from the service. If the failed flag is
false, the failure is temporary and receivers should assume that the flow of Status events will
resume automatically at some point.

DataView support
The IAFStatusDataViewService provides support for publishing the status of an IAF adapter as a
DataView item. It can be used to easilymonitor the adapter status usingApama's Scenario Browser
or to visualize the adapter status using an Apama dashboard. The IAFStatusDataViewService.mon
file, which can be found in the adapters/monitors directory of the Apama installation, needs to
be injected to make use of the IAFStatusDataViewService. Note that the monitor is not included
in any bundle in SoftwareAGDesigner. Formore information on the DataViewService, see "Making
Application Data Available to Clients" in Developing Apama Applications.

The status of every adapter is published as a DataView item of a single DataView definition
(IAF_ADAPTER_STATUS). The IAFStatusDataViewService is dependent on the IAFStatusManager and
can only publish the status of adapters which support the IAFStatusManager.

The IAFStatusDataViewService uses the following events:

The AdapterDataViewRegister event is used to register an adapter for publishing its status as
a DataView item. You have to route the AdapterDataViewRegister event with the appropriate
adapter name to start publishing its status.

The AdapterDataViewDeregister event is used to de-register an adapter from publishing its
status as a DataView item. You have to route the AdapterDataViewDeregister event with the
appropriate adapter name to stop publishing its status.

The AdapterDataViewResponse event is sent in response of the AdapterDataViewRegister and
AdapterDataViewDeregister events to indicate the success or failure of the operation.

See the API Reference for EPL (ApamaDoc) for more details about the IAFStatusDataViewService
and the events.

Once an adapter is registered to publish its status information as a DataView item, the
IAFStatusDataViewService starts consuming AdapterUp and AdapterError events from the
IAFStatusManager. Each registered adapter has a corresponding DataView item for the status.
This DataView item is periodically updated with the current status from the AdapterUp and
AdapterError events.

After an adapter has been registered for publishing its status, the adapter status can be viewed in
the Scenario Browser or visualized in a dashboard:

To view the adapter status in the Scenario Browser, open the Scenario Browser as described
in "Displaying the Scenario Browser" (in Using Apama with Software AG Designer), and then
click or expand the IAF Adapter Status node to see the current status of the adapter.

420 Connecting Apama Applications to External Components 10.11.3

21 Monitoring Adapter Status

To visualize the adapter status in a dashboard, use the IAF_ADAPTER_STATUS DataView as the
data source. For more information, see "Attaching Dashboards to Correlator Data" in Building
and Using Apama Dashboards.

Connecting Apama Applications to External Components 10.11.3 421

21 Monitoring Adapter Status

422 Connecting Apama Applications to External Components 10.11.3

21 Monitoring Adapter Status

22 Out of Band Connection Notifications

■ Mapping example ... 424

■ Ordering of out of band notifications .. 425

Connecting Apama Applications to External Components 10.11.3 423

When a sender and receiver component, such as a correlator, connects to or disconnects from the
IntegrationAdapter Framework (IAF), the IAF automatically sends out of band notification events
to adapter transports.

Out of band events make it possible for a developer of an adapter to add appropriate actions for
the adapter to take when it receives notice that a component has connected or disconnected. For
example, an adapter can cancel outstanding orders or send a notification to an external system.
In order to make use of the out of band events, adapters need to provide suitable mapping in the
adapter configuration file. Adapters are also free to ignore these events.

For general information about using out of band notifications, see "Out of band connection
notifications" inDeveloping ApamaApplications. Keep inmind that the OutOfBandConnections event,
which is mentioned in that topic, is used to get only the senders and receivers that are connected
to correlator.

Mapping example
Out of band events will only be received by codecs and transports if the semantic mapper is
configured to allow them through. The semantic mapper should be configured as for any other
set of eventswhich itmaywish to pass down. Formore information on creating semanticmapping
rules, see “The <event> mapping rules” on page 349.

For example:
<event package="com.apama.oob" name="ReceiverDisconnected"

direction="upstream" encoder="$CODEC$" inject="false">
<id-rules>

<upstream />
</id-rules>
<mapping-rules>

<map type="string" default="OutOfBandReceiverDisconnected"
transport="_name" />

<map apama="physicalId" transport="physicalId" default="" type="string" />
<map apama="logicalId" transport="logicalId" default="" type="string" />

</mapping-rules>
</event>
<event package="com.apama.oob" name="ReceiverConnected"

direction="upstream" encoder="$CODEC$" inject="false">
<id-rules>

<upstream />
</id-rules>
<mapping-rules>

<map type="string" default="OutOfBandReceiverConnected"
transport="_name" />

<map apama="name" transport="appname" default="" type="string" />
<map apama="host" transport="address" default="" type="string" />
<map apama="physicalId" transport="physicalId" default="" type="string" />
<map apama="logicalId" transport="logicalId" default="" type="string" />

</mapping-rules>
</event>
<event package="com.apama.oob" name="SenderDisconnected"

direction="upstream" encoder="$CODEC$" inject="false">
<id-rules>

<upstream />
</id-rules>

424 Connecting Apama Applications to External Components 10.11.3

22 Out of Band Connection Notifications

<mapping-rules>
<map type="string" default="OutOfBandSenderDisconnected"

transport="_name" />
<map apama="physicalId" transport="physicalId" default="" type="string" />
<map apama="logicalId" transport="logicalId" default="" type="string" />

</mapping-rules>
</event>
<event package="com.apama.oob" name="SenderConnected" direction="upstream"

encoder="$CODEC$" inject="false">
<id-rules>
<upstream />
</id-rules>
<mapping-rules>

<map type="string" default="OutOfBandSenderConnected" transport="_name" />
<map apama="name" transport="appname" default="" type="string" />
<map apama="host" transport="address" default="" type="string" />
<map apama="physicalId" transport="physicalId" default="" type="string" />
<map apama="logicalId" transport="logicalId" default="" type="string" />

</mapping-rules>
</event>

The events are transmitted to signify the following events:

ReceiverConnected— an external receiver has connected; the IAF can now send events to it.

ReceiverDisconnected— an external receiver has disconnected; events will not be sent to this
external receiver until it reconnects.

SenderConnected— an external sender has connected. This external sender may send events
following this event.

SenderDisconnected— an external sender has disconnected. No more events will be received
from this sender until a new SenderConnectedmessage event is received.

However, adapters can make use of a disconnect message to not transmit events until such time
as a connect occurs. For example, an adapter can coalesce events or tell external system to stop
sending. Note that if multiple senders and receivers are connected and disconnected, the adapter
will need to keep track of which one is connected.

Ordering of out of band notifications
The following guidelines describe when out of band connection and disconnection messages are
received, and how this interacts with the framework provided to IAF adapters:

Transports and codecs will not be sent events until after their start function has been called and
completed. Transports should not start generating events until their start function has been called.
The first event that is delivered after the start function is called will be a SenderConnected or
ReceiverConnected event, if the semantic mapper is configured to pass them through. An adapter
will always receive the SenderConnected before it begins to receive any other events, but the
ordering of the ReceiverConnected and SenderConnected events is not guaranteed.

If a correlator (or other component) disconnects or terminates while the adapter is running, the
adapterwill receive both ReceiverDisconnected and SenderDisconnected events.Again, the ordering
of these events is not guaranteed. Once a SenderDisconnected event is received, no further events

Connecting Apama Applications to External Components 10.11.3 425

22 Out of Band Connection Notifications

from that correlator will be received until a SenderConnected event is received. When a
ReceiverDisconnected event is received, no more events will be sent to that correlator until a
ReceiverConnected event is received. Note that in this situation, some previously sent events may
not yet have reached that correlator. The events will be discarded (or sent to other receivers, if
other receivers are connected).

On a reload of an adapter, the adapter will be stopped, new configuration loaded, and the adapter
restarted. During this period, the IAF will not drop its connection unless the configuration of
which components to connect to has changed.As such, if prior to stopping for a reload the correlator
was connected, it is safe to assume that it remains connected unless, on reload, the adapters receive
SenderDisconnected or ReceiverDisconnected events.

During a reload, the IAF can also load new adapters. In this event, as the IAF may already have
a connection open, no ReceiverConnected or ReceiverDisconnected event may be received by the
new adapters. It is thus recommended to not change transports and codecs when reconfiguring
the IAF if the adapters depend on receiving the out of band events. In practice, it is unusual to
change the loaded transports or codecs.

Once an adapter has entered a stopped state, it will not receive any further events (unless it later
re-enters a started state). Since the shutdown order of the IAF is to move all adapters to their
“stopped” state, then disconnect from downstream processes, adapters will not receive a final
“disconnected” event. Therefore, the adapter may need to notify external systems on the stop
function being called, as well as on disconnected events.

The following topics describe the ordering the transport will see of calls to start, stop and the
transport receiving out of band and normal events.

When starting the IAF

IAF begins initialization

Adapters initialize

IAF connects to correlator

[IAF receives SenderConnected and ReceiverConnected - these are queued]

Adapter changes state to Started

Prior to receiving any other events, the semantic mapper (and then codec and adapter) receive
the now unqueued out of band SenderConnected and ReceiverConnected events.

The SenderConnected event will arrive before any other events from said sender are delivered

IAF shutdown requested

Adapters state changes from started to stopped

IAF disconnects from correlator

Because transport is in state “stopped”, no events are received

IAF terminates

426 Connecting Apama Applications to External Components 10.11.3

22 Out of Band Connection Notifications

IAF Configuration Reload

Transport is in state “started”

IAF transitions transport to state “stopped”

IAF keeps its connection to the correlator up

IAF transitions transport to state started

Transport checks state, notices that it believes a connection is up, and continues toworkwithout
any changes

IAF Configuration reload changes correlator connection

Transport is in state “started”

IAF transitions transport to state “stopped”

IAF breaks its connection to the correlator

IAF receives ReceiverDisconnected and SenderDisconnected

Since the transports are stopped, these events are queued

IAF opens a new connection to a new correlator

IAF receives ReceiverConnected and SenderConnected

Since the transports are stopped, these events are queued

IAF transitions transport to state started

Transport checks state, notices that it believes a connection is up, and continues toworkwithout
any changes

Prior to receiving any other events, the ReceiverDisconnected and SenderDisconnected events
are received

Following these, but prior to receiving any other events, the ReceiverConnected and
SenderConnected events are received

The transport can then behave as if a new connection has been made

Correlator dies (and a new one is started) while the IAF is running

Transport is in state “started”

Correlator breaks its connection to the IAF

IAF receives ReceiverDisconnected and SenderDisconnected

Transport receives ReceiverDisconnected and SenderDisconnected

Following SenderDisconnected no more events should arrive from the correlator

Connecting Apama Applications to External Components 10.11.3 427

22 Out of Band Connection Notifications

Time passes

A new correlator makes a connection to the IAF

IAF receives ReceiverConnected and SenderConnected

Transport receives ReceiverConnected and SenderConnected

The transport can now behave as if a new connection has been made

428 Connecting Apama Applications to External Components 10.11.3

22 Out of Band Connection Notifications

23 The Event Payload

As already described, Apama events are rigidly structured and need to comply with a precise
event type definition. This describes the structure of a particular event: in particular its name, as
well as the order, name, type and number of its constituent fields.

By contrast, external events, even when they are of the same “type” or nature (for example, all
Trade events or News headlines) might vary in format and structure, even when originating from
the same source or feed.

In order to accommodate this, Apama provides an optional payload field in Apama events. The
payloadfield, typically the last field in an event type definition, can embed any number of additional
optional fields in addition to the always-present primary fields.

For example, consider an external message that can appear in several guises, but where each
always consists of a particular subset of critical fields togetherwith a variable number of additional
optional fields.

If it is desired that these varying guises are mapped to a single Apama event type, then this needs
to be defined so that its fields correspond to the subset of critical (and always present) fields,
followed by a payload field into which the additional (and optional) fields are embedded.

Creating a payload field

When so configured, the Semantic Mapper will transparently create a payload field in an event.

As described in “Event mappings configuration” on page 343, one of the attributes of the
event-mapping element <event> is copyUnmappedToDictionaryPayload.

The copyUnmappedToDictionaryPayload attribute defines what the Semantic Mapper should do
with any fields in the incoming messages that do not match with any field mapping, i.e. if there
are no rules that specifically copy their contents into a fieldwithin theApama event being generated.

If this attribute is set to false, any unmapped fields are discarded.

If this attribute is set to true, unmapped fields will be packaged into a payload field, called
__payload, set to be the last field of the Apama event type generated by the Semantic Mapper.

Accessing the payload in the correlator

Using copyUnmappedToDictionaryPayload puts all the payload fields in a standard EPL dictionary.

Connecting Apama Applications to External Components 10.11.3 429

430 Connecting Apama Applications to External Components 10.11.3

23 The Event Payload

V Standard IAF Plug-ins

24 The Database Connector IAF Adapter (ADBC) .. 433

25 The File IAF Adapter (JMultiFileTransport) ... 483

26 The Basic File IAF Adapter (FileTransport/JFileTransport) .. 497

27 Codec IAF Plug-ins .. 499

Connecting Apama Applications to External Components 10.11.3 431

432 Connecting Apama Applications to External Components 10.11.3

V Standard IAF Plug-ins

24 The Database Connector IAF Adapter (ADBC)

■ Overview of using ADBC .. 434

■ Registering your ODBC database DSN on Windows ... 435

■ Adding an ADBC adapter to an Apama project .. 436

■ Configuring the Apama database connector .. 437

■ The ADBCHelper application programming interface ... 444

■ The ADBC Event application programming interface ... 456

■ The Visual Event Mapper ... 478

■ Playback ... 480

■ Sample applications ... 481

■ Format of events in .sim files .. 481

Connecting Apama Applications to External Components 10.11.3 433

The Apama Database Connector (ADBC) is an adapter that uses the Apama Integration Adapter
Framework (IAF) and connects to standard ODBC and JDBC data sources as well as to Apama
Sim data sources. With the ADBC adapter, Apama applications can store and retrieve data in
standard database formats as well as read data fromApama Sim files. Data can be retrieved using
the ADBCHelper API or the ADBC Event API to execute general database queries or retrieved for
playback purposes using the Apama Data Player.

There are three versions of the ADBC adapter, one each for ODBC, JDBC, and Sim data sources.

For information about playing back data, see "Using the Data Player" inUsing Apama with Software
AG Designer.

Overview of using ADBC
ADBC is implemented as anApama adapter that uses theApama IntegrationAdapter Framework
(IAF) to connect to standard ODBC and JDBC data sources as well as to Apama Sim data sources.

When connected to JDBC or ODBC data sources, ADBC provides access to most open source and
commercial SQL databases. With either of these data sources, Apama applications can capture
events flowing through the correlator and play them back at a later time. In addition to storing
and retrieving event data, Apama applications can store non-event data and execute queries against
the data. Dashboards in Apama applications can directly access JDBC database data.

An Apama Sim data source is a file with data stored in a comma-delimited format with a .sim file
extension. Apama release 4.1 and earlier captured streaming data to files in this format. TheApama
ADBC adapter can read .sim files but it does not store data in that format. For information on the
format of .sim files, see “Format of events in .sim files” on page 481.

Apama provides JDBC database drivers for the following Apama-certified databases:

Microsoft SQL Server

Oracle

Apama does not provide any ODBC drivers. You need to use your own ODBC drivers to use
ODBC. Any bugs in driver need to be directly resolvedwith the driver vendor. Use of JDBC rather
than ODBC is recommended.

Using the Apama database drivers eliminates the need to install vendor-supplied drivers. In
addition, they are pre-configured; so when you select an Apama database driver in an Apama
project in SoftwareAGDesigner, the adapter instance is automatically configuredwith appropriate
JDBC settings.

The Apama JDBC drivers are licensed to be used with any Apama component.

Apama provides two Application Programming Interfaces (APIs) for using the ADBCConnector:
the ADBCHelper API and the ADBC Event API.

The ADBCHelper API contains the basic features you need for most common use cases, such as
opening and closing databases and executing SQL commands and queries. For more information
on theADBCHelperAPI, see “TheADBCHelper application programming interface” on page 444.

434 Connecting Apama Applications to External Components 10.11.3

24 The Database Connector IAF Adapter (ADBC)

The ADBC Event API contains features for more complex use cases. For example, in addition to
opening and closing databases, it contains actions for discoveringwhat data sources and databases
are available. For more information on the ADBC Event API, see “The ADBC Event application
programming interface” on page 456.

Apama's ADBCAdapter editor in Software AGDesigner includes an Event Mapping tab that lets
you quickly specify the mapping rules for storing events in existing database tables. Software AG
Designer generates a service monitor that listens for the events of interest and stores them in the
database. This monitor provides a quick and straight forward way of writing event data to a
database for general analytical purposes; however, it is not meant to be a fail-safe management
system.

The ADBC adapter uses separate thread pools for executing queries and commands and will
execute each command and query in its own thread. The thread pools are createdwith aminimum
of four threads but for machines withmore than four CPU cores the number of threads will match
the number of cores. The adapter log will show the number of threads in the thread pools, for
example:

Query and Command threadpools using 4 threads

The maximum number of concurrent queries running will match the number of threads in the
thread pool. As an example, on amachine with less than four cores, this would be four concurrent
queries and four concurrent commands.

Additional queries and commands submittedwill be queued for execution until a thread becomes
free. If more than four long running queries are submitted, additional queries will be queued. If
amix of short and known long running queries are being used, the applicationmaywant to control
the submission of long running queries to ensure the shorter duration queries do not have to wait.
If the execution of the short duration queries are required to be runwithout delay, a second adapter
can also be started and used to service just the shorter duration queries.

Registering your ODBC database DSN on Windows
OnWindows it is necessary to register your database and give your database configuration a
unique Data Source Name (DSN) before using it from Apama.

To register your ODBC database DSN

1. From the Windows Control Panel, double-click the ODBC Data Sources icon. If this icon is
not listed, double-click theAdministrative Tools icon and then double-click theData Sources
(ODBC) icon.

This will open the ODBC Data Source dialog.

2. On the User DSN tab, click Add.

3. In the Create New Data Source window, select the driver for which you want to setup a data
source.

Connecting Apama Applications to External Components 10.11.3 435

24 The Database Connector IAF Adapter (ADBC)

4. Click Finish to display the Setup dialog.

5. Enter a Data Source Name. This is the name you will use in Apama when creating data
attachments.

6. Click OK in the Setup, and ODBC Data Source dialogs.

Note:
Standard UNIX systems do not provide an ODBC driver. On UNIX systems, it is currently
unsupported to set up an ODBC driver to communicate with your database.

Adding an ADBC adapter to an Apama project
When you add an ADBC adapter to an Apama project in Software AG Designer, all the resources
associated with the adapter such as service monitors and configuration files are automatically
included.

ADBC adapters are available for three different data sources:

JDBC Adapter (Apama database connector for JDBC)

ODBC Adapter (Apama database connector for ODBC)

Sim File Adapter (Apama database connector for Sim files)

To add an adapter to a project

1. There are two ways of adding an ADBC adapter to a project.

If you are creating a new Apama project:

1. From the File menu, choose New > Apama Project.

2. Give the project a name, and click Next.

If you are adding an ADBC adapter to an existing project:

1. In the Project Explorer view, right-click the Connectivity and Adapters node and
select Add Connectivity and Adapters.

2. Enter a newname for the adapter instance or accept the default instance name. Software
AG Designer prevents you from using a name that is already in use.

2. Select the ADBC adapter bundle that is appropriate to the kind of data source your application
will use. Click OK.

When you add a data source-specific adapter, the ADBC Adapter (Common Apama database
connector adapter) bundle will be added to the project automatically.

436 Connecting Apama Applications to External Components 10.11.3

24 The Database Connector IAF Adapter (ADBC)

Configuring the Apama database connector
The Apama Database Connector is an adapter that is instantiated with the Apama Integration
Adapter Framework (IAF). The IAF enablesApama applications to connect to sources ofmessages
and events and to consumers of messages and events; with ADBC, these sources and consumers
can be databases. Before using the ADBC adapter, you need to supply the correct information in
the adapter's configuration file.

If you develop your Apama application using Software AG Designer, the correct configuration
files are included in the application's project file when you add the appropriate ADBC adapter
bundle to the project. In order to connect to a database, you need to specify in the adapter's
configuration file the properties such as the type and name of data source and the name of the
database that the application will use.

If you are not using Software AG Designer, you need to manually create the configuration file
from the ADBC adapter template file. For more information on creating the configuration file
manually, see “Manually editing a configuration file” on page 441.

Configuring an ADBC adapter
In Software AG Designer, an adapter's configuration file is opened in Apama's adapter editor. By
default, the file is displayed in the editor's graphical view,which is accessed by clicking theSettings
tab. The editor's other tabs are:

Event Mapping —Displays the Visual Event Mapper where you can quickly map Apama
event fields to columns in a database table.

XML Source —Displays the configuration file's raw XML code.

Advanced—Provides access to other configuration files associatedwith the adapter instance.
These other files specify, for example, the instance's mapping rules, generated monitors and
events responsible for storing events in a database, and named queries.

To configure an instance of an ADBC adapter

1. In the Project Explorer, expand the project's Adapters node and open the adapter folder
(ODBC Adapter, JDBC Adapter, or Sim File Adapter).

2. Double-click the entry for the adapter instance you want to configure. The configuration file
opens in the adapter editor.

The Settings tab of the editor's graphical display presents configuration information. For an
instance of the ADBC-JDBC adapter, the following tabs are shown:

General Properties

Advanced Properties

Variables

Connecting Apama Applications to External Components 10.11.3 437

24 The Database Connector IAF Adapter (ADBC)

For an instance of the ADBC-ODBC adapter, the display is similar but with fewer items in the
above sections. For an instance of the ADBC-Sim file adapter, the display only shows the
Variables section.

3. In the General Properties section, add or edit the following:

Database type —This drop-down list allows you to select one of the database types from
the list of certified vendors.

Database URL — This specifies the complete URL of the database. By default, it uses the
value of the DATABASE_LOCATION variable; for more information on this variable, see the
description of the Variables section below.

Driver — For the ADBC-JDBC adapter, this specifies the class name of the vendor's JDBC
driver. By default, it uses the value of the JDBC_DRIVER_NAME variable; for more information
on this variable, see the description of the Variables section below.

Driver classpath — For the ADBC-JDBC adapter, this specifies the classpath for the
vendor's driver jar file. By default, it uses the value of the JDBC_DRIVER_JARFILE variable;
for more information on this variable, see the description of the Variables section below.

Store batch size — This defines the number of events (rows) to persist using the
ODBC/JDBC batch insert API. The use of this setting will significantly increase store
performance, but it is not supported by all drivers. A value of 100 is appropriate and will
provide good performance in most cases.

If store performance is critical, testing is required to find the optimal value for the data
and driver being used. The default is 0 which disables the use of batch inserts.

Store commit interval — This defines the interval in seconds before the ADBC adapter
will automatically perform a commit for any uncommitted SQL command or store
operations. The default value is 0.0, which disables the use of the timed commits.

Auto commit — This controls the use of the ODBC/JDBC driver autocommit flag. The
default value is false.

Login timeout — This is a JDBC-specific property that allows you to change the default
login timeout when com.apama.database.Connection.OpenDatabase or
com.apama.database.Connection.OpenDatabaseShared are called.

Query timeout — This is a JDBC-specific property that allows you to set the timeout for
queries. The default value is 0. Keep inmind that different database vendors define a query
timeout differently; see the documentation for these databases for more information.

Note:
For more information on the interaction of the Auto commit, Store commit interval and
Store batch size properties, see “Committing database changes” on page 450.

4. In the Advanced Properties section, add or edit information for the following:

Transaction isolation level — This specifies what data is visible to statements within a
transaction. The Default level uses the default level defined by the database server vender.

438 Connecting Apama Applications to External Components 10.11.3

24 The Database Connector IAF Adapter (ADBC)

To change this setting, enter the appropriate value. For JDBC and ODBC, the values can
be READ_UNCOMMITTED, READ_COMMITTED, REPEATABLE_READ, or SERIALIZABLE.

Alternate discovery query — In most situations, an entry here is not required and the
ADBC Discoverymethod lists the database available based on the DATABASE_LOCATION
variable. In some cases, youmay need to use a server vendor-specific SQL query statement
to list the available databases, such as MySQL's SHOW DATABASES.

Log inbound events —A boolean that specifies whether or not the application logs
inbound ADBC API events with information such as the exact query or command being
executed. Logging these events is used for diagnostic purposes and eliminates the need to
turn on IAF debug logging. The default is false; do not log incoming events.

Log outbound events — The same as Log inbound events except for outbound ADBC
API events.

Log commands — This property specifies whether or not the starts and completions of
commands arewritten to the IAF log file. A value of true (the default) logs this information;
a value of false turns logging off. This is useful in cases where logging the start and
completion of a high rate of commands (many hundreds or thousands per second) does
not add usable information to the log file.

Log queries —This property behaves identically to the Log commands property except
that it specifies whether or not to log the start and completion of queries.

Flow control low water — This defines a threshold for the number of query responses
not acknowledged by the ADBC flow control monitor before a query paused by Flow
control high water is resumed. This is used by the ADBC query flow control system to
ensure the correlator does not get overwhelmed, especially when performing a fast as
possible playback. The default value is 6000.

Flow control high water — This defines a maximum threshold for the number of query
responses that have not been acknowledged by the ADBC flow control monitor. If this
value is reached, the query will be paused until the number of outstanding
acknowledgments decreases to the Flow control low water value. This is used by the
ADBC query flow control system to ensure the correlator does not get overwhelmed,
especially when performing a fast as possible playback. The default value is 15000.

Query template config file — This specifies the file containing the query templates that
are available to the application. By default, this uses a default template file created for the
individual Apama project.

You can add or edit values of the following additional advanced properties by clicking the
XML Source tab and modifying the text of the configuration file:

NumericSeparatorLocale— This allows the numeric separator used in the adapter to be
changed, if necessary, to match the one used by the correlator. See “Configuring ADBC
localization” on page 442.

CloseDatabaseIfDisconnected— This controls automatic closing of databases whose
connection is found to be invalid. See “Configuring ADBC Automatic Database Close” on
page 442.

Connecting Apama Applications to External Components 10.11.3 439

24 The Database Connector IAF Adapter (ADBC)

FixedSizeInsertBuffers— This is an ODBC-specific property that allows you to change
the default buffer size used when the StoreData and StoreEvent actions perform batch
inserts. Apama uses the FixedSizeInsertBuffers property along with the StoreBatchSize
property to determine how large the insert buffers should be. The value specified by
StoreBatchSize determines how many rows need to be buffered; the value specified by
FixedSizeInsertBuffers controls the size of the buffers for the columns. The default true
uses a fixed buffer size of 10K bytes for each column. If the value is changed to false, the
size of the column buffers is determined dynamically by examining the database table into
which the data will be inserted. Allowing the buffer size to be set dynamically can
significantly reduce memory usage when performing batch inserts to database tables that
contain hundreds of columns or when using a very large StoreBatchSize.

5. In the Variables section, add or edit the appropriate values for the following tokens:

ADAPTER_CONFIG_DIR— JDBC and ODBC adapters only. This specifies the directory where
the adapter's configuration files are located. This is automatically set by default.

ADAPTER_INSTANCE_ID—This refers to the instance ID that is given to the adapter by Software
AG Designer.

ADAPTER_INSTANCE_NAME— This refers to the adapter name that is displayed in Software
AG Designer.

ADAPTERS_DIR— JDBC and ODBC adapters only. Specifies the directory where the adapter
will look for the adapter files. By default, this is theApama installation's adapters directory.

ADAPTERS_JARDIR— JDBC adapter only. This specifies the directory where the Apama
adapter jar files are located. By default, this is the Apama installation's adapters\lib
directory.

APAMA_HOME— This refers to the location of the Apama installation directory.

APAMA_MSG_ENABLED—Apama elements can be enabled to define how IAF connects to the
Apama correlator(s). The enabled attribute has valid values as true or false. This is based
on the launch configuration.

BUNDLE_DIR—Sim file adapter only. This specifies the directory where the adapter bundle
is located.

BUNDLE_DISPLAY_NAME—This refers to the adapter bundle name that is displayed in Software
AG Designer.

BUNDLE_INSTANCES— Sim file adapter only. This refers to the bundle instances files that
Software AG Designer has copied to the project.

CORRELATOR_HOST—This specifies the name of the host machinewhere the project's default
correlator runs. This is automatically set by default.

CORRELATOR_PORT—This specifies the port used by the correlator. This is automatically set
by default.

DATABASE_LOCATION— This specifies the location of the database for use with the ADBC
Discovery API, for example, jdbc:mysql://localhost/trades.

440 Connecting Apama Applications to External Components 10.11.3

24 The Database Connector IAF Adapter (ADBC)

JDBC_DRIVER_JARFILE— JDBC adapter only. This specifies the name of the data source
driver file, for example, a MySQL version X driver path might be specified at C:/Program
Files/MySQL/mysql-connector-java-X/mysql-connector-java-X.jar.

JDBC_DRIVER_NAME— JDBC adapter only. This specifies the class name of the driver, such
as com.mysql.jdbc.Driver.

MAPPING_INSTANCE_FILE— JDBC and ODBC adapters only. This refers to the file name for
the adapter's mapping configurations when configured through Software AG Designer.

UM_CONFIGURATION_FILE—This refers to the configuration file that is usedwhen configuring
the IAF to communicate via Universal Messaging. See also "Configuring IAF adapters to
use Universal Messaging" in Connecting Apama Applications to External Components.

Note:
Use of Universal Messaging from the IAF is deprecated and will be removed in a future
release.

UM_MSG_ENABLED— This refers to the flag that indicates whether the IAF is configured to
use Universal Messaging.

Note:
Use of Universal Messaging from the IAF is deprecated and will be removed in a future
release.

6. Specify the eventmapping rules of the configuration that are specific to your application using
the adapter editor's Visual Event Mapper, available on the Event Mapping tab. For more
information on specifying mapping rules, see “The Visual Event Mapper” on page 478.

Manually editing a configuration file

If you are not using Software AG Designer to develop your Apama application, you need to
manually copy the correct template files to your development environment. TheApama installation
provides template files to use as the basis for creating the IAF configuration file to start the ADBC
adapter. The templates are located in the adapters\config directory of the Apama installation.
The following templates are available:

ADBC-Sim.xml.dist—Use this configuration file template for accessing a Sim data source.

ADBC-ODBC.xml.dist—Use this configuration file template for accessing anODBCdata source.

ADBC-JDBC.xml.dist—Use this configuration file template for accessing a JDBC data source.

To create the configuration file for starting the ADBC adapter

1. Copy the appropriate template to your project.

2. Edit the name attributes of the various transport properties as necessary.

Connecting Apama Applications to External Components 10.11.3 441

24 The Database Connector IAF Adapter (ADBC)

When you start the IAF with the modified configuration file using the syntax
iaf path_to_modified_config_file, it automatically includes the appropriate commonconfiguration
files shown below.

ADBC-static.xml—Common event mapping for the ADI adapter events.

ADBC-static-codecs.xml— The codecs to use (currently null-codec).

ADBC-application.xml—Application specific event mappings.

ADBC-namedQuery-Sim.xml— The named query definitions for a Sim data source.

or

ADDC-namedQuery-SQL.xml— The named query definitions for ODBC and JDBC data sources.

ADBC-mapping_instance_name.xml—Contains the mappings defined by the user using the
Visual Event Mapper.

Configuring ADBC localization

The ADBC adapter internally handles all string data as UTF-8, and provides the same
internationalization support as the correlator. The correlator internally uses the C programming
language locale for formatting string versions of numeric values, so there can be conditions under
which theODBCand JDBCdriversmay use a locale that is not compatiblewith the English numeric
separator format used in ADBC. In locales that do not use English numeric separators, the ODBC
and JDBC drivers for some SQL vendors may not correctly handle numeric values passed from
the correlator. To address these cases, the ADBC adapter configuration property
NumericSeparatorLocale allows the numeric separator used in the adapter to be changed tomatch
the one used by the correlator. The property can be set to one of three values:

"" (empty string): Default. Don't change/set separator format.

C: Set numeric separator format to English.

Native: Set numeric separator format to system default.

A value of C causes the adapter's numeric separator locale to match that used by the correlator, so
that the JDBC and ODBC drivers correctly handle the numeric values. The value Native causes
the adapter to set the locale to the system default. This value is not generally needed and was
added for future use and for special cases in which technical support would direct it to be set. If
you notice incorrect numeric values when inserting or querying data from the database when
running in a locale that doesn't use the English-style numeric separators, then changing the
NumericSeparatorLocale property to C should correct the problem. In Software AG Designer, you
can access this property by using the XML Source tab in the adapter editor.

Configuring ADBC Automatic Database Close

The ADBC adapter performs a connectivity check when a JDBC or ODBC error is encountered,
and can be configured to automatically perform the database close operation if a connection is
found to be invalid. The IAF status manager will detect the database connection has been closed
and report the change in connection status. Applications need tomonitor the database connection

442 Connecting Apama Applications to External Components 10.11.3

24 The Database Connector IAF Adapter (ADBC)

status in order to take advantage of the automatic closing; this functionality is not integrated into
the ADBC APIs.

The ADBC adapter configuration property CloseDatabaseIfDisconnected is used to enable the
closing of databases that are detected as invalid.

False: Default. Don't perform automatic closing.

True: Close databases detected as invalid (that is, disconnected) .

Service monitors
If your Apama application uses ADBC, you need to inject several required service monitors. In
Software AG Designer, this is done automatically when you add the appropriate data source
adapter bundle to the application's project as described in “Configuring the Apama database
connector” on page 437. If you are not using Software AG Designer to develop your application,
you need to manually inject the following required service monitors in the order they are listed:

ADBCAdapterEvents.mon—Provides definitions for all events sent to or from theADBCAdapter.

ADBCEvents.mon—Provides the public API for ADBC, implemented as actions on the following
events:

Discovery— This event types defines the actions for discovering ADBC resources. It is
used to find the available data sources (ODBC, JDBC, Sim, etc.) and the default databases
and query templates configured for those data sources.

Connection— This event type defines actions for performing all operations on a database
except those involving queries

Query— This event type defines actions for performing queries on a database.

ADBCAdapterService.mon— Provides actions for the following:

Forwarding database request events to the adapter.

Forwarding database response events to the ADBC Service API layer.

Provides support for using the ADBC event API from contexts other than themain context
(see also setPrespawnContext in “Setting context” on page 454).

IAFStatusManager.mon

StatusSupport.mon

ADBCStatusManager.mon—Manages status subscriptions for the ADBC adapter and the
application.

ADBCHelper.mon— Include this monitor for applications that use the ADBCHelper API.

The ADBCmonitors and IAFStatusManager.mon are located in the adapters\monitors directory of
the Apama installation. The StatusSupport.monmonitor is located in the Apama installation's
monitors directory

Connecting Apama Applications to External Components 10.11.3 443

24 The Database Connector IAF Adapter (ADBC)

Codecs
By default, the ADBC adapter uses the standard Apama NullCodec. During playback, if your
application needs to modify, aggregate or perform analytics on events, you can create and specify
IAF codecs to perform these operations instead of using the standard NullCodec. For example,
capital market applications might convert quote to depth events during playback from a market
database. You define the logic for performing this type of conversion in the codec.

Formore information ondeveloping codecs, see “C/C++Codec Plug-inDevelopment” on page 375
and “Java Codec Plug-in Development” on page 397.

The ADBCHelper application programming interface
The ADBCHelper application programming interface (API) is a simplified, streamlined API for
communicating with databases. In most common use cases, this API is the appropriate way to
develop applications. For applications that require more complex ways of accessing databases,
see “The ADBC Event application programming interface” on page 456.

ADBCHelper API overview
The ADBCHelper API is defined in the file apama_dir\adapters\monitors\ADBCHelper.mon. The
API is implemented with the following events:

com.apama.database.DBUtil

com.apama.database.DBAcknowledge

The DBUtil event defines the actions thatApama applications call in order to interactwith databases.
The DBAcknowledge event is used by the ADBCHelper API to specify the success or failure for
database actions that request an acknowledgment. Note if you specify the following lines in your
code, you do not need to use the fully qualified name for DBUtil or DBAcknowledge.
using com.apama.database.DBUtil;
using com.apama.database.DBAcknowledge;

The basic steps for using the ADBCHelper API are described below.

To use the ADBCHelper API

1. Create an instance for the DBUtil event in your application code, for example:

com.apama.database.DBUtil db;

2. Call the setAdapterInstanceName action of DBUtil to identify the adapter instance, for example:

db.setAdapterInstanceName("JDBCAdapter1")

For more information, see “Specifying the adapter instance” on page 448.

444 Connecting Apama Applications to External Components 10.11.3

24 The Database Connector IAF Adapter (ADBC)

3. Check whether the database is already open or is in the process of being opened. This step is
optional, but it is good programming practice to check for these situations before calling an
open event action by calling the isOpen action of DBUtil. This returns a boolean that specifies
if the database is already open or in the process of being opened. For more information, see
“Checking to see if a database is open” on page 448.

4. Call one of the DBUtil open actions to open the database. Formore information on open actions,
see “Opening databases” on page 446.

5. Call one ormore DBUtil event actions, depending on the database task youwant to implement:

Call a SQL query event action to retrieve data from the database, in either a result set or
in Apama event format. For more information on query actions, see “Issuing and stopping
SQL queries” on page 449.

Call a SQL command event action to add, update, or delete data in the database. For more
information on SQL command actions, see “Issuing SQL commands” on page 450.

Optionally, if the autoCommit setting has been turned off, call a commit event action to
commit database changes, or call a rollback event action to rollback uncommitted changes.

Formore information on commit actions see “Committing database changes” on page 450.

Formore information on rollback actions, see “Performing rollback operations” on page 451.

6. Create actions as required to handle returned result sets. If the query returns events, create
listeners for events returned by the query. For more information on handling query results,
see “Handling query results for row data” on page 451.

7. For action calls that request an acknowledgment, your application needs to do the following:

a. Create an instance of the com.apama.database.DBAcknowledge event.

Note, if your code contains the following line, you do not need to use the fully qualified
name for DBAcknowledge.

using com.apama.database.DBAcknowledge;

b. Create a listener for the DBAcknowledge event that indicates when the DBUtil event action
call is complete.

For more information, see “Handling acknowledgments” on page 452.

8. Create an action that handles errors that could occur during execution of a DBUtil event action
call. For more information, see “Handling errors” on page 453.

9. Call the DBUtil event's close action to close the database. For information, see “Closing
databases” on page 454.

Connecting Apama Applications to External Components 10.11.3 445

24 The Database Connector IAF Adapter (ADBC)

Opening databases
The ADBCHelper API provides several actions for opening databases. The “quick” open actions
allow you to open JDBC and ODBC databases by passing in a minimal set of parameters, while
the “full” open action provides more control by passing in a complete set of parameters. The
“shared” open action allows you to use an already open existing matching connection or open a
new connection if a matching one does not exist.

In the following quick open actions, you need to pass in values for the following parameters:

URL— database connection string

user— user name

password— user password

handleError— name of a default error handler

See “Handling errors” on page 453 for more information on creating actions to handle errors.

The quick open actions use the default settings for the autoCommit (true), batchSize (100), and
timeOut (30.0) properties.
action openQuickJDBC(

string URL,
string user,
string password,
action < string > handleError)

action openQuickODBC(
string URL,
string user,
string password,
action < string > handleError)

The following code snippet shows a use of the openQuickJDBC action.
com.apama.database.DBUtil db;

action onload() {
string dbUrl:= "jdbc:mysql://127.0.0.1:3306/exampledb";
string user := "thomas";
string password := "thomas-123";
db.openQuickJDBC(dbUrl, user, password, handleError);
// ...

For the following open action you need to pass in all parameters.
action open(

string type,
string serviceId,
string URL,
string user,
string password,
string autoCommit,
boolean readOnly,
integer batchSize,
float timeOut,
action < string > handleError)

446 Connecting Apama Applications to External Components 10.11.3

24 The Database Connector IAF Adapter (ADBC)

Setting the autoCommit, batchSize, and timeOut parameters in the open action over-rides the adapter
properties specified in the IAF configuration file.

type— The data source type (ODBC, JDBC, Sim, etc.)

serviceId— The service id for the adapter

URL— The database connection string

user— The user name

password— The user password

autoCommit— The auto commit mode to use. If this parameter is not set, the open action uses
a combination of the AutoCommit and StoreCommitInterval properties specified in the adapter's
configuration file. For information on these properties, see “Configuring anADBC adapter” on
page 437. The value for the autoCommit parameter can be one of the following modes:

"" —An empty string specifies that the value set in the configuration file should be used.

true— Enables the ODBC/JDBC driver's auto commit.

false—Disable autoCommit.

x.x—Use timed auto commit interval in seconds.

For more information on the interaction of the AutoCommit, StoreCommitInterval and
StoreBatchSize properties, see “Committing database changes” on page 450.

readOnly— Specifies if the connection should be read-only. If the connection is read-only an
errorwill be reported for anyAPI action that requireswrites (Store, Commit, or Rollback). Most
databases do not prevent writes from a connection in read-only mode so it is still possible to
perform writes using the Command actions.

batchSize— The query results batch size to be used for any queries performed.

timeOut—Controls how long the ADBC open action will wait for the adapter to become
available if it is not running when the open action is called.

The following code snippet shows a use of the open action. It creates variables for each of the
parameters and passes them with the open action.
com.apama.database.DBUtil db;

action onload() {
string type := "jdbc";
string serviceId := "com.apama.adbc.JDBC";
string dbUrl:= "jdbc:mysql://127.0.0.1:3306/exampledb";
string user := "thomas";
string password := "thomas-123";
string commit := "15.0";
boolean readMode := false;
float openTimeout := 30.0;
Integer queryBatchSize := 100
db.open(type, serviceId, dbUrl, user, password, commit,

readMode, openTimeout, queryBatchSize, handleError);
// ...

Connecting Apama Applications to External Components 10.11.3 447

24 The Database Connector IAF Adapter (ADBC)

The following open action allows you to use a connection that is already open; the action opens
a connection if an existingmatching connection is not found. The openShared action uses the same
parameters as the open action, above.
action openShared(

string type,
string serviceId,
string URL,
string user,
string password,
string autoCommit,
boolean readOnly,
integer batchSize,
float timeOut,
action < string > errorHandler)

Specifying the adapter instance
Use the setAdapterInstanceName() action of DBUtil to specify an adapter instance.

Note:
For adapters created in versions of Apama prior to 9.12, the call to setAdapterInstanceName()
is optional if the adapter was added as INSTANCE_1.

To specify an adapter instance

Call the setAdapterInstanceName action, passing in the adapter instance name variable.

For example:
com.apama.database.DBUtil db;
action onload() {

string adapterInstanceName := "EXAMPLE_ADBC_INSTANCE";
db.setAdapterInstanceName(adapterInstanceName);
// ...

Checking to see if a database is open
Checking to see whether the database is already open or is in the process of being opened before
calling an open event action is optional, but it is good programming practice. An application may
also want to check if a database is open before executing a query.

The following example checks these fields to ensure that the application does not try to open an
already opened database.
com.apama.database.DBUtil db;

//...
if not db.isOpen() {

db.openQuickODBC(dbUrl,"","",handleError);
}

448 Connecting Apama Applications to External Components 10.11.3

24 The Database Connector IAF Adapter (ADBC)

Issuing and stopping SQL queries
The following actions execute SQL queries. The actions expect a response and a handleResult
action needs to be defined to handle each row returned.
action doSQLQuery(

string queryString,
action<dictionary<string, string>> handleResult)

action doSQLQueryOnError(
string queryString,
action<dictionary<string, string>> handleResult)

action doSQLQueryAck(
string queryString,
action <dictionary<string, string>> handleResult,
integer ackNum,
boolean onError)

The following query action allows you to specify a callback action for when the query completes.
The parameters are (1) the query string, (2) the handler action for each row returned and (3) the
handler for when the query completes. The handler for when the query completes has two
parameters, an error string and an integer that specifies the number of rows returned by the query.
action doSQLQueryWithCallback(

string queryString,
action<dictionary<string, string>> handleResult,
action <string, integer> handleDone)

The following actions are similar to the above query actions except they return Apama events
instead of results sets.
action doSQLEventQuery(

string queryString,
string eventType)

action doSQLEventQueryWithCallback(
string queryString,
string eventType,
action <string, integer> handleDone)

action doSQLEventQueryOnError(
string queryString,
string eventType)

action doSQLEventQueryAck(
string queryString,
string eventType,
integer ackNum,
boolean onError)

The following action cancels all outstanding queries in the queue.
action stopAll()

For more information on creating a handleResult action, see “Handling query results for row
data” on page 451.

Connecting Apama Applications to External Components 10.11.3 449

24 The Database Connector IAF Adapter (ADBC)

Issuing SQL commands
The following actions execute SQL commands and expect no responses.
action doSQLCmd(string queryString)
action doSQLCmdAck(

string queryString,
integer ackNum,
boolean onError)

action doSQLCmdOnError(string queryString)

The doSQLCmdOnError action executes only if a previous non- *OnError operation failed. This is
useful for doing, for example, a select * from table command and then, if an error occurs, execute
a create table ... command.

Committing database changes
There are several approaches to defining when ADBC should commit changes. Although it is
possible to use more than one of these, it is usually best to stick to just one:

EPL-controlled committing by calling DBUtil.doSQLCommit (or doSQLCommitAck). This is the
recommended approach for applications that update the database, as it givesmaximumcontrol
of transactions to the EPL application. Do not use this when autoCommit is enabled.

Automatic committing per SQL statement by setting autoCommit=true, which configures the
underlying database driver to automatically perform a commit after the completion of each
SQL statement (by default, this is disabled). This is useful for simple applications that only
perform read-only queries.

Timed committing by setting commitStoreInterval, which configures ADBC to batch up SQL
statements over the specified time window into a single commit (the default is 0 which means
that timed committing is disabled). Do not use this when autoCommit is enabled.

Note:
Whether you are using queries to get data from the database or to put data in, it is essential to
use at least one of these commit mechanisms, as queries will not complete until a commit is
issued.

There is also a property called StoreBatchSizewhich allowsmultiple SQL statements to be batched
together into a single call to the database, in order to reduce communication overhead. The batching
of statements does not itself result in any extra commits, but does still have some impact onwhich
statements are committed together:

If using EPL-controlled committing, the partial batch that has been received so far will be
committed.

If autoCommit is enabled, statements are not committed until the batch size is reached.

If using timed committing, a partial batch is committed when the time expires based on what
has been uncommitted to that point.

450 Connecting Apama Applications to External Components 10.11.3

24 The Database Connector IAF Adapter (ADBC)

Performing rollback operations
For rolling back uncommitted changes to database, use the following DBUtil actions. If you want
to use rollback actions, you need to turn autocommit off.
action doSQLRollback()

For rolling back uncommitted changes to database in situations where the previous SQLCmd,
SQLQuery, or SQLCommit operation failed, use:
action doSQLRollbackOnError()

When you want to rollback uncommitted changes to the database and receive a DBAcknowledge
event to indicate success or failure, use:
action doSQLRollbackAck(integer ackNum, boolean onError)

The ackNum parameter is the identifier for the DBAcknowledge event; setting it to -1will disable
sending the DBAcknowledge event and instead use the default error handler if an error occurs. For
the onError parameter, setting its value to truewill cause the operation to run only if the previous
SQLCmd, SQLQuery, or SQLCommit failed.

Handling query results for row data
For query actions that return a result set of rows of data, your application needs to define actions
to handle result sets. For example:
com.apama.database.DBUtil db;
action onload() {

db.openQuickODBC("exampledb","thomas","thomas123",handleError);
db.doSQLQuery("SELECT * FROM NetworkInformation", handleNetworkInfo);
// ...

}
action handleNetworkInfo(dictionary< string, string > data) {

log "Network: " + data["network"] + " CountryCode: " +
data["countrycode"] + " NIC: " +
data["networkidentificationcode"] at INFO;

}

Handling query results for event data
For query actions that return a result set in the form of events, your application needs to do the
following.

1. Define an event type that represents the returned data.

2. Map the returned data to fields in the event type. The easiest way to do this is to use the
Apama's Visual Mapper in Software AG Designer, which automatically saves the mapping
information in a project file. For more information, see “Using the Visual Event Mapper” on
page 478.

Connecting Apama Applications to External Components 10.11.3 451

24 The Database Connector IAF Adapter (ADBC)

3. Create a listener for the event type.

4. Execute a query that returns events.

For example, the following EPL code snippet defines an event, executes a query that returns data
in the form of the defined event, and defines a listener for the defined event:
event NetworkInfo {
string network;
integer countrycode;
integer nid;
}

//...
com.apama.database.DBUtil db;
action onload() {

db.openQuickODBC("exampledb","thomas","thomas123",handleError);
db.doSQLEventQuery("SELECT * FROM network_info", NetworkInfo);
//...

}
on all NetworkInfo := netInfo {

// Code to do something with the returned event...
}

Handling acknowledgments
Apama applications can call DBUtil SQL command and query actions as well as commit and
rollback actions that request a DBAcknowledgement event. The DBAcknowledgement event indicates
the success or failure of the action call. This is useful, for example, to knowwhether or not a query
has completed before performing another application operation.

The DBAcknowledgement event is defined in apama_install_dir\adapters\monitors\ADBCHelper.mon
as follows:
event DBAcknowledge
{
integer ackNum;
boolean success;
string error;
}

ackNum—A unique identifier for the action that requested the acknowledgment.

success—A value of true indicates success; false indicates failure.

error—A string describing the specific error.

For action calls that request an acknowledgment, your application needs to do the following:

1. Call an action that requests an acknowledgment, passing in a unique acknowledgment identifier.

2. Create a listener for theDBAcknowledge event that matches the acknowledgment identifier in
the calling action.

452 Connecting Apama Applications to External Components 10.11.3

24 The Database Connector IAF Adapter (ADBC)

For example:
integer ackId := integer.incrementCounter("ADBC.ackId");
db.doSQLQueryAck("SELECT * FROM NetworkInformation",

handleNetworkInfo,ackId,false);
//...
on DBAcknowledge(ackNum = ackId) as ack {

if ack.success {
log "Query complete" at INFO;

}
else {

log "Query failed: " + ack.error at ERROR;
die;

}
}

//...

Handling errors
The DBUtil actions require a user-defined handleError() action that takes a single stringparameter.
The handleError() action handles errors that could occur during execution of a DBUtil event action
call.

The following EPL code snippet shows a simple error handler.
//...
com.apama.database.DBUtil db;

//...
action onload() {

db.openQuickODBC("exampledb","thomas","thomas123", handleError);
//...

}

action handleError(string reason) {
log "DB Error: " + reason;

}

Reconnection settings
Apama applications can automatically reconnect if a disconnection error is encountered. The
reconnection capability is optional and the default is to not reconnect when a disconnection error
occurs. The following reconnection actions are defined in the com.apama.database.DBUtil event.

action setReconnectPolicy(string reconnectPolicy)—This action sets the policy for dealing
with adapter connection errors. The reconnectPolicy parameter must be one of the constants
specified in the DBReconnectPolicy event. The policy constants are as follows:

RECONNECT_AND_RETRY_LAST_REQUEST— Try to reconnect and leave the pending requests
unchanged, retry the last request on a successful database reconnection.

DO_NOT_RECONNECT—Do not try to reconnect. This is the default reconnect policy.

action setReconnectTimeout(float timeOut)—This action sets the timeout for the reconnection
after a connection error. A value specified by the setReconnectTimeout action overrides the

Connecting Apama Applications to External Components 10.11.3 453

24 The Database Connector IAF Adapter (ADBC)

default timeout value, which is equal to twice as long as specified by the open action's timeOut
parameter.

Closing databases
The following action closes the database. If doStopAll is set it also cancels all outstanding queries
and commands in the queue and prevents new queries and commands from being placed into the
queue.
action close(boolean doStopAll)

Getting schema information
The following actions return information about a table in a database. The actions are only valid
in the handleResult action specified in a doSQLQuery, doSQLQueryOnError, or doSQLQueryAck operation
when dealing with a returned row.
action getSchemaFieldOrder() returns sequence< string >
action getSchemaFieldTypes() returns dictionary< string, string >
action getSchemaIndexFields() returns sequence< string >

Setting context
By default the ADBCHelper API sends requests to an internal servicemonitor running in themain
context with the EPL route statement. However, if your application uses parallel processing and
spawns to multiple contexts, you have to add code that identifies the main context so the
ADBCHelper API can determine how to send events.

In applications with multiple contexts, use the following action to specify the main context before
spawning.
setPrespawnContext(context c)

Logging
This action specifies whether or not to log all SQL queries, commands, and commit operations to
the correlator's log file.
action setLogQueries(boolean logQueries)

The default is false, which disables logging.

Examples
The code listings in this section are adapted from the api-helper-example.mon application. The
actual code can be found in the Apama installation's samples\adbc\api-helper-example directory.

454 Connecting Apama Applications to External Components 10.11.3

24 The Database Connector IAF Adapter (ADBC)

Opening and closing a database and executing SQL commands
monitor ADBCHelper_Example
{
com.apama.database.DBUtil db;
action onload() {

db.openQuickODBC("MySQL", "fred", "fred-123", handleError);
db.doSQLCmd("insert into NetworkInformation values (

'Vodafone', 'FR', 104);");
db.doSQLCmd("insert into NetworkInformation values (

'O2', 'FR', 101);");
db.doSQLCmd("insert into NetworkInformation values (

'Three', 'FR', 102);");
db.doSQLCmdAck("insert into NetworkInformation values (

'Orange', 'FR', 103);", 100, false);
on com.apama.database.DBAcknowledge(ackNum = 100) as ack {

if ack.error.length() = 0 {
log "Action complete" at INFO;
// Other success handling code ...

}
else {

log "Action failed: " + ack.error at ERROR;
// Other failure handling code ...

}
db.close(false);
}

}
action handleError(string reason) {

log "DB Error: " + reason at ERROR;
}

}

Executing SQL queries
monitor ADBCHelper_Example
{
com.apama.database.DBUtil db;
action onload() {

db.openQuickODBC("DBName", "user", "password", handleError);
db.doSQLQuery(

"SELECT * FROM NetworkInformation", handleResult);
db.close(false);

}
action handleResult(dictionary< string, string > data) {

log "Network: " + data["network"] +
" CountryCode: " + data["countrycode"] +
" NIC: " + data["networkidentificationcode"] at INFO;

}
action handleError(string reason) {

log "DB Error: " + reason at ERROR;
}

}

Connecting Apama Applications to External Components 10.11.3 455

24 The Database Connector IAF Adapter (ADBC)

The ADBC Event application programming interface
TheADBC (ApamaDatabase Connector) Event application programming interface (API) provides
operations formore complex, lower level interactionswith databases than the operations included
with theADBCHelperAPI. TheADBCEventAPI is implementedwith the followingApama event
types and actions associated with those events.

Discovery—This event type provides actions to obtain the names of data sources, databases,
and named queries. Discovery actions are not necessary if your application knows the names
of data sources, databases, and query templates.

Connection—This event type provides actions for all operations on a database except for those
involving queries.

Query— This event type provides actions for creating and executing queries on databases.

PreparedQuery—This event type provides actions for creating prepared query statements that
are, in turn, used in queries.

The above events and associated actions are defined in the ADBCEvents.mon file.

In addition, some of the actions for Discovery events use the following event types, which are
defined in the ADBCAdapterEvents.mon file.

DataSource

Database

QueryTemplate

Discovering data sources
If your application needs to find available data sources, implement the following steps.

To discover data sources

1. Create a new Discovery event.

2. Use the Discovery event's findAvailableDataSources action.

3. Create a handler action to perform callback actions on the results of the
findAvailableDataSources action.

4. In the handler action, declare a variable for a DataSource event.

The definitions for the two forms of the findAvailableDataSources action are:
action findAvailableDataSources(
float timeout,
action <string, sequence<DataSource>> callback)

456 Connecting Apama Applications to External Components 10.11.3

24 The Database Connector IAF Adapter (ADBC)

and
action findAvailableDataSourcesFull(
float timeout,
dictionary<string,string> extraParams,
action <string, sequence<DataSource>> callback)

The definition of the DataSource event is:
event DataSource
{ string serviceId;
string name;
dictionary<string,string> extraParams;

}

serviceId— The service ID to talk to this DataSource.

name— The name of the DataSource such as ODBC, JDBC, or Sim.

extraParams—Optional parameters.

The relevant code in the samples\adbc\api-example\ADBC_Example.mon file is similar to this:
com.apama.database.Discovery adbc :=

new com.apama.database.Discovery;
adbc.findAvailableDataSources(TIME_TO_WAIT, handleAvailableServers);
action handleAvailableServers(string error,

sequence<com.apama.database.DataSource> results)
{

if error.length() != 0 {
log "Error occurred getting available data sources: " +

error at ERROR;
}
else {

if results.size() > 0 {

// Save off first service ID found.
// Assumes first data source has at least one db
if getDbServiceId() = "" {

dbServiceId := results[0].serviceId;
}
com.apama.database.DataSource ds;
log " DataSources: " at INFO;
for ds in results {

log " " + ds.name + " - " + ds.serviceId at INFO;
}
log "Finding Databases ..." at INFO;
// ... other logic ...

}
else {

log " No DataSources found" at INFO;
}

}
}

Discovering databases
If your application needs to find available databases, implement the following steps.

Connecting Apama Applications to External Components 10.11.3 457

24 The Database Connector IAF Adapter (ADBC)

To discover databases

1. Given a Datasource event, call the event's getDatabases action.

2. Create a handler action to perform callback actions on the results of the getDatabases action.

3. In the handler action, declare a variable for a Database event.

The definitions for the two forms of the getDatabases action are:
action getDatabases(
string serviceId,
string user,
string password,
action<string, sequence<Database>> callback)

and
action getDatabasesFull(
string serviceId,
string locationURL,
string user,
string password,
dictionary<string,string> extraParams,
action <string, sequence<Database>> callback)

Note:
JDBC data sources will usually require user and password values.

The definition of the Database event is:
event Database
{
string shortName;
string dbUrl;
string description;
dictionary<string,string> extraParams;

}

shortName—A short display name

dbUrl— The complete URL of the database, for example,
“jdbc:sqlserver://localhost/ApamaTest”.

extraParams—Optional parameters.

The relevant code in the samples\adbc\api-example\ADBC_Example.mon file is similar to this:
action handleAvailableServers(string error,

sequence<com.apama.database.DataSource> results)
{

if error.length() != 0 {
log "Error occurred getting available data sources: " +

error at ERROR;
}
else {

458 Connecting Apama Applications to External Components 10.11.3

24 The Database Connector IAF Adapter (ADBC)

if results.size() > 0 {

// Save off first service ID found.
// Assumes first data source has at least one db
if getDbServiceId() = "" {
dbServiceId := results[0].serviceId;

}
com.apama.database.DataSource ds;
log " DataSources: " at INFO;
for ds in results {
log " " + ds.name + " - " + ds.serviceId at INFO;

}
log "Finding Databases ..." at INFO;
for ds in results {
adbc.getDatabases(ds.serviceId, USER, PASSWORD,

handleAvailableDatabases);
}

}
else {

log " No DataSources found" at INFO;
}

}
}

string dbName;
action handleAvailableDatabases(string error,

sequence<com.apama.database.Database> results)
{

if error.length() != 0 {
log "Error occurred getting available databases: " +

error at ERROR;
}
else {

if results.size() > 0 {
// Save name of first db found
if getDbName() = "" {
dbName := results[0].shortName;

}
com.apama.database.Database db;
log " Databases: ";
for db in results {
log " " + db.shortName + " - " +

db.description + " - " + db.dbUrl at INFO;
}
// ... other logic...

}
else {

log " No Databases found" at INFO;
}

}
}

Opening a database
In order to open a database, your application should implement the following steps:

1. Create a new Connection event.

Connecting Apama Applications to External Components 10.11.3 459

24 The Database Connector IAF Adapter (ADBC)

2. Call the Connection event's openDatabase action with the database's service ID, database URL,
autocommit preference, and the name of the callback action.

3. Create the handler action for the openDatabase callback action.

The definitions for the different forms of the openDatabase actions are:
action openDatabase(
string serviceId,
string databaseURL,
string user,
string password,
string autoCommit,
action <Connection, string> callback)

and
action openDatabaseFull (
string serviceId,
string databaseURL,
string user,
string password,
string autocommit,
boolean readOnly,
dictionary<string,string> extraParams,
action <Connection, string> callback)

In addition to these open actions you can also open a database using an already open matching
connection if one exists using the openDatabaseShared action. If an existing connection is not found,
the action opens a new connection.
action openDatabaseShared (
string serviceId,
string databaseURL,
string user,
string password,
string autocommit,
boolean readOnly,
dictionary<string,string> extraParams,
action <Connection, string> callback)

The value for the autocommitparameter is a combination of the AutoCommit and StoreCommitInterval
properties. For information on these properties, see “Configuring anADBC adapter” on page 437.
The value for the autocommit parameter can be one of the following modes:

""—An empty string specifies that the value set in the configuration file should be used.

true—Use the data source's value as determined by the ODBC or JDBC driver.

false—Disable autocommit.

x.x—Use time auto commit interval in seconds.

The readOnly parameter specifies if the connection should be read-only. If the connection is
read-only an error will be reported for any API action that requires writes (Store, Commit, or

460 Connecting Apama Applications to External Components 10.11.3

24 The Database Connector IAF Adapter (ADBC)

Rollback). Most databases do not prevent writes from a connection in read-only mode so it is still
possible to perform writes using the Command actions.

Specifying parameter values in the open actions overrides the property values set in the
configuration file.

The relevant code in the samples\adbc\api-example\ADBC_Example.mon file is similar to this:
com.apama.database.Connection conn :=

new com.apama.database.Connection;
action handleAvailableDatabases(string error,

sequence<com.apama.database.Database> results)
{

if error.length() != 0 {
log "Error occurred getting available databases: " +

error at ERROR;
}
else {

if results.size() > 0 {
// Save name of first db found
if getDbName() = "" {
dbName := results[0].shortName;

}
com.apama.database.Database db;
log " Databases: " at INFO;
for db in results {
log " " + db.shortName + " - " +

db.description + " - " + db.dbURL at INFO;
}
log "Opening Database " + dbName + " ..." at INFO;
string serviceId := getDbServiceId();
conn.openDatabase(serviceId, results[0].dbUrl, USER,

PASSWORD, "", handleOpenDatabase);
}
else {
log " No Databases found" at INFO;

}
}

}

Note:
If reusing a database connection, rather than calling openDatabase again, it is advised to use
reopenWithAck instead. In caseswhere there are issues using the current connection, for example,
the call to closeDatabase is not succeeding following an incident where the IAF went down,
then you should call reopenWithAck to recover the connection.

Closing a database
In order to close a database your application should implement the following steps:

1. Call the closeDatabase() action of the Connection event (for the open database) with the name
of the callback action.

2. Create a handler action for the closeDatabase callback action.

Connecting Apama Applications to External Components 10.11.3 461

24 The Database Connector IAF Adapter (ADBC)

The definitions for the two forms of the closeDatabase() action are:
action closeDatabase(
action <Connection, string> callback)

and
action closeDatabaseFull(
boolean force,
dictionary<string,string> extraParams,
action<Connection,string> callback)

The relevant code in the samples\adbc\api-example\ADBC_Example.mon file is similar to this:
com.apama.database.Connection conn :=
new com.apama.database.Connection;
// ...

conn.openDatabase(serviceId, results[0].dbUrl, "",
handleOpenDatabase);

// ...
conn.closeDatabase(handleCloseDatabase);

action handleCloseDatabase(com.apama.database.Connection conn,
string error)

{
if error.length() != 0 {

log "Error closing database " + getDbName() + ": " +
error at ERROR;

}
else {

log "Database " + getDbName() + " closed." at INFO;
}

}

Storing event data
In order to store an event in a database, your application needs to use the Connection event's
storeEvent action. The definition of the storeEvent action is:
action storeEvent(
float timestamp,
string eventString,
string tableName,
string statementName,
string timeColumn,
dictionary<string,string> extraParams) returns integer

The getTime() call on the event is used to set the timestamp value.

Similarly, the toString() call on an event sets the eventString field.

The tableName parameter specifies the name of the database table where you want to store the
data.

The statementName parameter specifies the name of a storeStatement that references a prepared
statement or stored procedure. The storeStatement is created with the Connection event's
createStoreStatement action. See “Creating and deleting store events” on page 464 for more

462 Connecting Apama Applications to External Components 10.11.3

24 The Database Connector IAF Adapter (ADBC)

information on creating a storeStatement. If you do not want to specify a prepared statement or
stored procedure, the statementName parameter should be set to "" (an empty string).

The timeColumnparameter specifies the column in the databasewhere youwant the event timestamp
to be stored.

The storeEvent action returns an integer value, which is the identifier for the event being stored.
The setStoreErrorCallback action is used to specify an action to be usedwhen an error is reported.

To store an event and provide acknowledgment, implement the storeEventWithAck() action and
a callback handler. The definition of the storeEventWithAck action is:
action storeEventWithAck(
float timestamp,
string eventString,
string tableName,
string statementName,
string timeColumn,
string token,
dictionary<string,string> extraParams,
action <Connection, string, string> callback)

In addition to the parameters used with the storeEvent action, the storeEventWithAck() action
includes token and callback parameters. The token parameter specifies a user-defined string to
be passed in thatwill be returned in the callback action. This allows the callback to performdifferent
operations depending on the token value. In thisway, a single callback action can performdifferent
operations, eliminating the need to create separate callbacks for each operation. If the token
parameter is not needed for the callback, it should be set to "" (an empty string).

The callback parameter specifies the callback action that handles the success or failure of the
storeEventWithAck action.

If you want to avoid the overhead of receiving acknowledgments each time event data is added
to a database table, use the storeEvent action. If your application needs to handle a failure during
a call to the storeEvent action, it should call the setStoreErrorCallback action; formore information,
see “Handling data storing errors” on page 465.

Storing non-event data
In order to store non-event data in a database, your application needs to use the Connection event's
storeData() action. The definition of the storeData() action is:
action storeData(
string tableName,
string statementName,
dictionary<string,string> fields,
dictionary<string,string> extraParams) returns integer

The tableName parameter specifies the name of the database table where you want to store the
data.

The statementName parameter specifies the name of a StoreStatement that references a prepared
statement or stored procedure. The storeStatement is created with the Connection event's
createStoreStatement action. See “Creating and deleting store events” on page 464 for more

Connecting Apama Applications to External Components 10.11.3 463

24 The Database Connector IAF Adapter (ADBC)

information on creating a storeStatement. If you do not want to specify a prepared statement or
stored procedure, the statementName parameter should be set to "" (an empty string).

The fields parameter specifies the column values to be stored.

To store an event and provide acknowledgment, implement the storeDataWithAck() action and
a callback handler. The definition of the storeDataWithAck() action is:
action storeDataWithAck(
string tableName,
string statementName,
dictionary<string,string> fields,
string token,
dictionary<string,string> extraParams,
action <Connection, string, string> callback)

In addition to the parameters used with the storeData() action, the storeDataWithAck() action
includes token and callback parameters. The token parameter specifies a user-defined string to
be passed in thatwill be returned in the callback action. This allows the callback to performdifferent
operations defending on the token value. In thisway, a single callback action can performdifferent
operations, eliminating the need to create separate callbacks for each operation. If the token
parameter is not needed for the callback, it should be set to "" (an empty string).

The callback parameter specifies the callback action that handles the success or failure of the
storeDataWithAck() action. The acknowledgment callback string contains any errors reported as
well as the returned token, an empty acknowledgment string indicates success.

If you do not have to take additional action each time a row of data is added to a database table,
you can avoid the overhead of receiving acknowledgments by using the storeData() action. If
your application needs to handle a failure during a call to the storeData() action, it should call
the setStoreErrorCallback action; for more information, see “Handling data storing errors” on
page 465.

Creating and deleting store events
If your application will use a prepared statement or a stored procedure in a store action (such as
storeData or storeEvent) you need to first create a storeStatementwith createStoreStatement
action.

The createStoreStatement is defined as:
action createStoreStatement(

string name,
string tableName,
string statementString,
sequence<string> inputTypes,
dictionary<integer,string> inputToNameMap,
dictionary<string,string> extraParams,
action<Connection,string,string> callback)

The arguments for this action are:

464 Connecting Apama Applications to External Components 10.11.3

24 The Database Connector IAF Adapter (ADBC)

name - The name of the storeStatement instance that will be used in a store action. The name
must be unique. Specifying a value for name is optional and if omitted, one will be created in
the form Statement_1.

tableName - The name of the database table where the data will be written when the store
action that uses the storeStatment is called.

statementString - The SQL string that will be used as a template when the store action that
uses the storeStatement is called. You can use questionmark characters to indicate replaceable
parameters in the statement. For example, "insert into myTable(?,?,?) values(?,?,?)".

If youwant to use a stored procedure, in the statementString enclose the name of the database's
stored procedure in curly brace characters ({ }) and use questionmark characters (?) to indicate
replaceable parameters. For example, "{call myStoredProcedure(?,?,?)}". Stored procedures
used in this way can only take input parameters. The stored procedure must exist in the
database.

inputTypes - Specifies the types that will be used as replaceable parameters in the
statementString.

inputToNameMap - Specifieswhat data item should be used for each input parameter of the store
statement. If storing data it would be the name from the dictionary of data to be stored. If
storing events it would be the event field name. When you specify the dictionary, the integer
is the position and the string is the data name. For example, you might specify the
inputToNameMap parameter as follows:
inputToNameMap :=

{1:"timefield",2:"strfield",3:"intfield",4:"floatfield",5:"boolfield"};

extraParams - Not required

callback - The action's callback handler. The definition of the callback action should take the
error message as the first string parameter followed by the storeStatement name.

The deleteStoreStatement is defined as:
action deleteStoreStatement(

string statementName,
string tableName,
dictionary<string,string> extraParams,
action<Connection,string,string> callback)

Handling data storing errors
If your application uses the storeData or storeEvent actions, you can use the setStoreErrorCallback
action to handle failures. This is useful for applications that make a large number of store calls
where high performance is important and acknowledgement for an individual store operation
call is not required. A single setStoreErrorCallback action can handle the failure ofmultiple store
calls. The setStoreErrorCallback action is defined as follows:
action setStoreErrorCallback(

action<Connection, integer, integer, string> callback)
{

Connecting Apama Applications to External Components 10.11.3 465

24 The Database Connector IAF Adapter (ADBC)

Calls to storeData and storeEvent actions return unique integer identifiers; use these identifiers
in the setStoreErrorCallback action. The first integer specifies the indentifier of the first store
action where an error occurred; the second integer specifies the indentifier of the last store action
error. callback specifies the name of the user-defined error handling action.

Committing transactions
By default, the auto-commit behavior assumes the AutoCommit and StoreCommitInterval properties
specified in the adapter's configuration file and the open action are using the default values. If
you want more control over when changes are committed to a database, set the openDatabase
action's autoCommit parameter to false and in your EPL code, manually commit data using the
Connection event's commitRequest action.

To commit a transaction manually

1. Create a callback action to handle the results of the commitRequest action.

2. Call the commitRequest() action of the Connection event (for the open database) with the name
of the callback action.

The definitions for the two forms of the commitRequest action are:
action commitRequest(
action<Connection, integer, string, string> callback) returns integer

and:
action commitRequestFull(
string token,
dictionary<string, string> extraParams,
action<Connection, integer, string, string> callback) returns integer

Rolling back transactions
To roll back a database transaction, your application should use the Connection event's
rollbackRequest action. If you want to use rollback actions, you need to turn autocommit off.

To roll back a transaction

1. Create a callback action to handle the results of the rollbackRequest action.

2. Call the rollbackRequest action of the Connection event (for the open database) with the name
of the callback action.

The definitions for the two forms of the rollbackRequest action are:
action rollbackRequest(
action<Connection, integer, string, string> callback) returns integer

466 Connecting Apama Applications to External Components 10.11.3

24 The Database Connector IAF Adapter (ADBC)

and:
action rollbackRequestFull(
string token,
dictionary<string, string> extraParams, string token,
action<Connection, integer, string, string> callback) returns integer

Running commands
To execute database commands, such as creating a table or SQL operations such as Delete and
Update, use the Connection event's runCommand action.

To run a command

1. Call the runCommand action of the Connection event (for the open database) with the a string
containing the SQL command to execute and the name of the callback action.

2. Create a handler action for the runCommand() callback action.

The definitions for the two forms of the runCommand are:
action runCommand(
string commandString,
string token,
action <Connection, string, string> callback)

and:
action runCommandFull(
string commandString,
string token,
dictionary<string, string> extraParams,
action<Connection, string, string> callback)

Executing queries
An Apama application can execute three types of SQL queries on databases:

Standard query — An SQL query that you write in your EPL code. This is typically a simple
query provided as a string when your EPL code initializes the query. The query string is used
when the query is submitted to the database when your EPL code calls the action that starts
the query. See “Executing standard queries” on page 468.

Prepared query — An SQL query that uses a “prepared statement” or “stored procedure”,
both of which are stored in the database. Because they are stored in the database, prepared
queries aremore efficient than standard and named queries as they do not need to be compiled
and destroyed each time they are run. Input parameters for prepared queries are not set during
initialization. They are set after initialization, but before the query is submitted to the database
when the query start action is called. See “Prepared statements” on page 471 and “Stored
procedures” on page 472.

Connecting Apama Applications to External Components 10.11.3 467

24 The Database Connector IAF Adapter (ADBC)

Named query — An SQL query that you write in an XML file as part of the Apama project in
Software AGDesigner. Typically, you use a named query if you plan to use the querymultiple
times (as a template, supplying parameterized values). If the query is relatively complex, it is
useful to separate it from your EPL code for readability. Your EPL code specifies the query
template name and the template parameter names and values to use when it initializes the
query. The template name andparameters are usedwhen the query is submitted to the database
when your EPL code calls the action that starts the query. See “Named queries” on page 474.

Executing standard queries

In order to execute a standard query, your application needs to implement the following steps:

1. Create a new Query event.

2. Initialize the query by calling the Query event's initQuery action passing in the name of the
database's Connection event and the query string. The relevant init action should be called
each time before calling the query's start action.

3. Call the Query event's setReturnType action to specify the return type. Apama recommends
specifying the return type using one of the following constants:

Query.RESULT_EVENT

Query.RESULT_EVENT_HETERO

Query.NATIVE

Query.HISTORICAL

See “Return Types” on page 469 below for more information on return types.

4. If the return type is Native, indicate the event type to be returned by specifying it with the
Query event's setEventType action.

The setEventType action is defined as:
action setEventType(string eventType)

In addition, you need to add mapping rules to the ADBC adapter's configuration file for the
event type being returned.

5. In addition, if the return type is Native, specify the database table column that stores the event's
timestamp with the Query event's setTimeColumn action.

The setTimeColumn action is defined as:
action setTimeColumn(string timeColumn)

6. If the query will return a large number of results, call the Query event's setBatchSize action
passing in an integer setting the batch size.

468 Connecting Apama Applications to External Components 10.11.3

24 The Database Connector IAF Adapter (ADBC)

7. If you set a batchsize, also use the Query event's setBatchDoneCallback action passing in values
for the token and callback parameters.

action setBatchDoneCallback(
string token,
action<Query,string,integer,float,string,string> callback)

8. If the application needs to know the query's result set schema, call the Query event's
setSchemaCallback action passing in the name of the handler action.

9. Call the Query event's start action passing in the name of the handler action that will be called
when the query completes.

Return Types:

NATIVE— This return type is most commonly used for playback. When a query is run, each
row of the query will be passed through the IAF mapping rules and the matching event will
be sent as-is to the correlator. The Native return type would not be used for general database
queries.

In addition to specifying the Native return type, your query needs to specify the event type to
be returned and the name of the database table's column that contains the event's time stamp.
Specify the event by using the Query event's setEventType action; specify the time column by
using the Query event's setTimeColumn action. You also need to add mapping rules for this
event type to the ADBC adapter's configuration file.

HISTORICAL—This return type is also used for playback. When a query is run, each row of the
query will be passed through the IAF mapping rules and then the matching event will be
“wrapped” in a container event. The container event will have a name based on that of the
event name. For example a Tick event would be wrapped in a HistoricalTick event. Event
wrapping allows events to be sent to the correlator without triggering application listeners. A
separate user monitor can listen for wrapped events, modify the contained event, and reroute
it such that application listeners can match on it. The Wrapped return type would not be used
for general database queries.

RESULT_EVENT— This return type is used for general database queries. When a query is run,
each row in the result set will be mapped to a dictionary in a generic ResultEvent. The ADBC
adapter will generate a SchemaEvent containing the schema (name and type) of the fields in
the result set of the query. The SchemaEventwill be sent first, before any ResultEvents.

The definition for ResultEvent is:
event ResultEvent {

integer messageId; // Unique id of query
string serviceId;
integer schemaId; // ResultSchema event schemaId to use with ResultEvent
dictionary <string, string> row; // Data

}

The definition for ResultSchema is:
event ResultSchema {

integer messageId; // Unique id of query

Connecting Apama Applications to External Components 10.11.3 469

24 The Database Connector IAF Adapter (ADBC)

string serviceId;
integer schemaId;
sequence <string> fieldOrder;
dictionary <string, string> fieldTypes;
sequence <string> indexFields;
dictionary<string,string> extraParams;

}

RESULT_EVENT_HETERO— This return type is intended for advanced database queries. It is not
applicable to SQL databases. Some market databases support queries which can, in essence,
return multiple tables. For example a market database might allow queries which return
streams of both Tick and Quote data. For such databases multiple SchemaEventswould be
generated indexed by id.

Stopping queries

The following action cancels all outstanding queries in the queue.
action stopAllQueries(

action<Connection,string> callback)

Preserving column name case

In order to provide compatibility for a wide number of database vendors, the ADBC adapter
normally converts column names to lower case. However, if you want to execute complex queries
where the _ADBCType or _ADBCTime are returned as part of the query rather than being specified
using the setEventType and setTimeColumn actions on the query, you need to set the ColumnNameCase
property in the ADBC adapter's configuration file to unchanged.

Setting the ColumnNameCase property is done by manually editing the ColumnNameCase property to
the configuration file.

To edit the ColumnNameCase property

1. In the Project Explorer, in the project's Adapters node, expand the ODBC or JDBC adapter,
and double-click the adapter instance to open it in the ADBC adapter editor.

2. Display the ADBC adapter editor's XML source tab.

3. In the <transport> element, edit the ColumnNameCase property as follows:

<property name="ColumnNameCase" value="unchanged"/>

4. Save the ADBC adapter instance's configuration.

When the ColumnNameCase property is set to unchanged, you can specify a query string in the
following form:
string queryString := "SELECT *, 'Trade' AS _ADBCType FROM TradeTable

WHERE symbol = "ADL";

470 Connecting Apama Applications to External Components 10.11.3

24 The Database Connector IAF Adapter (ADBC)

The other values for the ColumnNameCase property can be lower, (the default) and upper.

Prepared statements
Apama applications can use prepared statements when executing queries. Prepared statements
have the following performance advantages over standard queries:

The query does not need to be re-parsed each time it is used.

The query allows for replaceable parameters.

Using a prepared statement

Note that PreparedQuery events support only ODBC/JDBC data types. Vendor-specific data types
are not allowed.

To use a prepared statement

1. Create a new Query event.

2. Create a new PreparedQuery event.

3. Call the new PreparedQuery event's init() action, passing in the database connection, the
query string, the input types if using replaceable parameters and the output types if it will be
used as a stored procedure.

The definition for the init() action is:
action init (

Connection conn,
string queryString,
sequence<string> inputTypes,
sequence<string> outputTypes)

The arguments for the init() action are:

conn— The name of the database's Connection event.

queryString—The SQL query string; you can use question mark characters (?) to indicate
replaceable parameters.

inputTypes— This is optional, but if you use replaceable parameters in the queryString,
you need to specify the types that will be used in the query.

outputTypes— This is optional, but if the PreparedQuery event is to be used for a stored
procedure and it uses output parameters, you need to specify the output types.

For example:
sequence<string> inputTypes := ["INTEGER","INTEGER"];
myPreparedQuery.init (

myConnection,

Connecting Apama Applications to External Components 10.11.3 471

24 The Database Connector IAF Adapter (ADBC)

"SELECT * FROM mytable WHERE inventory > ? and inventory <?",
inputTypes, new sequence<string>);

4. Call the new PreparedQuery event's create() action, passing in the name of the callback action.

5. In the callback action's code, call the Query event's initPreparedQuery() action (instead of the
initQuery() action), passing in the name of the PreparedQuery event. See “Executing standard
queries” on page 468. As with any query, the relevant init action should be called each time
before calling the query's start action.

6. Call the Query event's setInputParams() action, passing in the values to be used for the
replaceable parameters. This should always be called before starting a query that is using a
prepared query.

The definition of the setInputParams() action is:
setInputParams(sequence<string> inputParams)

If you want to use NULL for the value of a replaceable parameter, use ADBC_NULL.

7. If necessary, call any of the other Query actions, such as setBatchSize(), as required.

8. Call the Query event's start() action as you would when executing any other query. See
“Executing standard queries” on page 468.

Stored procedures
Apama applications can use stored procedures when executing queries. Using stored procedures
is similar to using prepared statements. The difference is that a stored procedure needs to specify
the name of the stored procedure and the output types returned by the query.

Using a stored procedure

Queries in Apama applications use stored procedures by specifying the name of the stored
procedure in a prepared statement's query string.

To use a stored procedure

1. Create a new Query event.

2. Create a new PreparedQuery event.

3. Call the new PreparedQuery event's init() action, passing in the database connection, the
query string, the input types, and the output types.

The definition for the init() action is:
action init (

Connection conn,

472 Connecting Apama Applications to External Components 10.11.3

24 The Database Connector IAF Adapter (ADBC)

string queryString,
sequence<string> inputTypes,
sequence<string> outputTypes)

The arguments for the init() action are:

conn— The name of the database's Connection event.

queryString—The SQL query string; enclose the name of the database's stored procedure
in curly brace characters ({ }) and use question mark characters (?) to indicate replaceable
parameters.

inputTypes— Specify the types that will be used for the replaceable parameters in the
queryString.

outputTypes— Specify the types that will be used for the replaceable parameters in the
result.

For example:
sequence<string> inputTypes := ["INTEGER", "NULL", "INTEGER"];
sequence<string> outputTypes := ["NULL", "INTEGER", "INTEGER"];
myPreparedQuery.init (

myConnection,
"{call myprocedure(?,?,?)}",
inputTypes,
outputTypes);

If a parameter is used as both an input and output type, it must be specified in both places.

If it is only an input type it must be specified as NULL in outputType.

If it is only an output type it must be specified as NULL in inputType.

Therefore, in the example above, the first parameter is just an input type; the second parameter
is just an output type; and the third parameter is both an input and output type.

4. Call the new PreparedQuery event's create() action, passing in the name of the callback action.

5. In the callback action's code or once the callback action has been called, call the Query event's
initPreparedQuery() action instead of the initQuery() action, passing in the name of the
PreparedQuery event. An errorwill be reported if theQuery event's initPreparedQuery is called
before the PreparedQuery create callback has been called. See “Executing standard queries” on
page 468.

6. Call the Query event's setInputParams() action, passing in the values to be used for the
replaceable parameters.

The definition of the setInputParams() action is:
setInputParams(sequence<string> inputParams)

If you want to use NULL for the value of a replaceable parameter, use ADBC_NULL.

7. If necessary, call any of the other Query actions, such as setBatchSize(), as required.

Connecting Apama Applications to External Components 10.11.3 473

24 The Database Connector IAF Adapter (ADBC)

8. Call the Query event's start() action as you would when executing any other query. See
“Executing standard queries” on page 468.

Named queries
Apama applications can use named queries. Named queries are templates with parameterized
values and are stored in Apama projects. Queries of this type provide advantages for queries that
will be used multiple times. They also serve to keep the SQL query strings separate from the
application's EPL code.

To use a named query, your EPL code needs to specify the query template name and the template
parameter names and values to usewhen it initializes the query. The template name andparameters
are used when the query is submitted to the database.

You define a named query as a query template in the ADBC adapter's ADBC-queryTemplates-
SQL.xml file. This file contains some pre-built named queries:

findEarliest—Get the row with the earliest time (based on the stored event's timestamp).

findLatest—Get the row with the latest time.

getCount—Get the number of rows in a table.

findAll—Get all the rows from a table.

findAllSorted—Get all the rows from a table ordered by column.

Using named queries

To use a named query

1. Create a new Query event.

2. Initialize the query by calling the Query event's initNamedQuery() action, passing the name of
the database's Connection event, the name of the query template, and a dictionary<string,
string> containing the names and values of the named query's parameters.

3. Call the Query event's setReturnType() action to specify the return type to be ResultEvent.
When a query is run, each row in the result set will be mapped to a dictionary event field in
a ResultEvent event.

4. Call the Query event's setReturnEventCallback() action to specify the callback action that will
handle the results returned by the query.

5. If the query will return a large number of events (on the order of thousands):

a. Call the Query event's setBatchSize() action passing an integer that sets the batch size.
The query returns results in batches of the specified size.

474 Connecting Apama Applications to External Components 10.11.3

24 The Database Connector IAF Adapter (ADBC)

b. Call the Query event's setBatchDoneCallback() action passing the name of the handler
action.

c. Define the setBatchDoneCallback() action to define what to do when a batch is complete.
You must call the Query event's getNextBatch() action to continue receiving the query
results. The batch size for the next batch is set by passing an integer parameter for the batch
size. You could also call the stop action to stop the query, rather than continuing to receive
batches of data.

6. Call the Query event's start() action passing the name of the handler action that will be called
when the query completes.

7. Create the callback action that you specified in Step 4, to handle the results returned by the
query.

8. Each row of data that matches the query results in a call to the callback action, returning the
row results in a parameter of ResultEvent type. The ResultEvent type contains a dictionary
field that contains the row data.

9. Create the action that specifies what to do when the query completes (when all results are
returned).

The following example uses the initNamedQuery() action call to initialize the query, specifying the
findEarliest named query and stock_tables as the value for the named query's TABLE_NAME
parameter.
using com.apama.database.Connection;
using com.apama.database.Query;
using com.apama.database.ResultEvent;

monitor ADBCexample {
Connection conn;
Query query;

string serviceId := "com.apama.adbc.JDBC_INSTANCE_1";
string dbUrl := "jdbc:mysql://127.0.0.1:3306/exampledb";
string user := "root";
string password := "mysql";
string queryString := "SELECT * FROM sys.tables";
string tableName := "stock_table";
dictionary<string,string> paramTable :=

{"TABLE_NAME":tableName,"TIME_COLUMN_NAME":"tbd"};

action onload() {
conn.openDatabase(serviceId, dbUrl, user, password, "",

handleOpenDatabase);
}
action handleOpenDatabase (Connection conn, string error){

if error.length() != 0 {
log "Error opening database : " + error at ERROR;

}
else {

log "Database is open." at INFO;

Connecting Apama Applications to External Components 10.11.3 475

24 The Database Connector IAF Adapter (ADBC)

runQuery();
}

}
action runQuery() {

query.initNamedQuery(conn, "findEarliest", paramTable);
query.setReturnType("ResultEvent");
query.setResultEventCallback("token", handleResultEvent);
query.start(handleQueryComplete);

}
action handleResultEvent(Query q, ResultEvent result,string token) {
log result.toString() at INFO;
}

action handleQueryComplete(Query query, string error,
integer eventCount, float lastEventTime) {

if error.length() != 0 {
log "Error running query '" + queryString + "': " +

error at ERROR;
}
else {
log " Query '" + queryString + "' successfully run." at INFO;
log " Total events: " + eventCount.toString() at INFO;
if lastEventTime > 0.0 {

log " Last Event Time: " + lastEventTime.toString()
at INFO;

}
}

conn.closeDatabase(handleCloseDatabase);
}
action handleCloseDatabase(Connection conn, string error) {

if error.length() != 0 {
log "Error closing database : " + error at ERROR;

}
else {

log "Database closed." at INFO;
}

}
}

Creating named queries

Each named query in the ADBC-queryTemplates-SQL.xml file is defined in an XML <query> element.
Each <query> element has the following attributes:

name— The name of the query.

description—A short description of the query.

implementationFunction— The substitution function that the adapter uses to process the
named query. The substitution function allows you to specify tokens that are replaced by
parameters with matching names.

inputString—A string that contains the substitution tokens you want to replace with values
specified as parameters.

A <query> element can also have one ormore optional <parameter> child elements. Each <parameter>
element has the following attributes:

476 Connecting Apama Applications to External Components 10.11.3

24 The Database Connector IAF Adapter (ADBC)

description—A short description of the parameter.

name— The name of the parameter.

type— The data type of the parameter.

default— The default value of the parameter.

As an example, the following XML code in the ADBC-queryTemplates-SQL.xml file defines the
pre-built findEarliest named query. The query returns the row with the earliest time.
<query

name="findEarliest"
description="Get the row with the earliest time."
implementationFunction="substitution"
inputString="select * from ${TABLE_NAME} order by ${TIME_COLUMN_NAME}

asc limit 1">
<parameter

description="Name of a table to query"
name="TABLE_NAME"
type="String"
default=""/>

<parameter
description="Name of the time column"
name="TIME_COLUMN_NAME"
type="String"
default="time"/>

</query>

To create a named query

1. In the Project Explorer, expand the project's Adapters node and open the adapter folder.

2. Double-click the instance configuration file to open it in the adapter editor.

3. In the adapter editor, select the Advanced tab.

4. Click the ADBC-queryTemplates-SQL.xml file to open it.

5. Select the Design tab.

6. On the Design tab, right-click the namedQuery element and select Add Child > New Element.

7. In the New Element dialog, type query, then click OK. A new query row is added to the list.

8. For each of the four attributes (name, description, implementationFunction, inputString):

a. Right-click the query element you have added, and select Add Attribute > New Attribute.

b. In the New Attribute dialog, provide a Name and a Value for the attribute.

Connecting Apama Applications to External Components 10.11.3 477

24 The Database Connector IAF Adapter (ADBC)

9. If you want the query to use input parameters, for each parameter:

a. Right-click the query element and select Add Child > New Element.

b. In the New Element dialog, type parameter, then click OK.

c. Create the following attributes for each parameter:

description

name

type

default

10. Save the project's version of the query template file.

The Visual Event Mapper
Note:
The Visual Event Mapper is no longer available for ODBC data sources.

When you add or open an instance of the ADBC Adapter, the adapter editor provides a Visual
EventMapper. The EventMapper is available by selecting theEvent Mapping tab.With the Event
Mapper you specify an Apama event type and a table in an existing JDBC database. When you
save the adapter configuration file, Software AG Designer creates the rules that provide the
mapping between the fields in the event and the columns in the database. The mapping rules are
stored in the adapter instance's configuration file.

TheGenerate Store Monitors option in theVisual EventMapper specifieswhether or not Software
AGDesigner generates all the necessary EPL code formonitors that listen for events of the specified
types as well as for the EPL code that interacts with the database -- opening the database, checking
the adapter status, storing event data, etc. This is the default setting. If you turn this option off,
you need to write the EPL code for event listeners and for interacting with the database.

TheAuto Start Events option in the EventMapper specifieswhether or not SoftwareAGDesigner
generates events that cause Software AG Designer to automatically start saving event data when
the application is launched. If you turn this option off, your application needs to manually send
a StartStoreConfiguration event in order to start saving data.

Using the Visual Event Mapper
ADBC uses the SQL driver to perform the conversion between Apama types and SQL (JDBC)
types. Any restrictions are due to the SQL database vendor and the SQL driver being used.

To map an Apama event to a table in a database

478 Connecting Apama Applications to External Components 10.11.3

24 The Database Connector IAF Adapter (ADBC)

1. Add a new instance of the ADBC Adapter or open an existing instance and select the adapter
editor's Event Mapping tab.

2. If you want Software AG Designer to automatically generate an EPL monitor to listen for
events of the specified type, make sure the Generate Store Monitors option is enabled; this
is the default setting. In addition to generating all the necessary EPL code for monitors that
listen for events of the specified types, all the EPL code that interacts with the database is
generated: opening the database, checking the adapter status, storing event data, etc. This
setting is useful if your application does not need to guarantee that each event is persisted.
The generated monitor provides a best effort storage implementation suitable for storing data
to be analyzed in tools like Analyst Studio. The generated monitor does not perform any
filtering so all events of the type specified will be stored.

If your application needs to perform filtering of the events or needs to guarantee that each
event will be persisted, you should disable Generate Store Monitors option and manually
write the required code for the EPL monitors and for interacting with the database.

3. Make sure there is a check mark in the Auto Start check box (this is the default) if you want
to start saving event data immediately when you launch the project. If you clear the check
mark in the Auto Start check box, your application will need to manually send a
StartStoreConfiguration event in order to start storing events.

4. In the adapter editor, click the Add button. The Event Persistence Configuration dialog opens.

5. In the Event Persistence Configuration dialog, click theBrowse button next to the Event field.
The Event Type Selection dialog opens, displaying the available event types you can select
from. Only events that can be emitted are shown; events that contain fields with contexts or
actions are not displayed.

6. In the Event Type Selection dialog, select the event type you want to map as follows:

a. In the Event Type Selection field, enter the name of the event. As you type, event types
thatmatchwhat you enter are shown in theMatching Items list.When you select an event,
the full name is shown on the dialog's status line. You can turn off this display with the
dialog's Down Arrow menu icon ().

b. In the Matching Items list, select the name of the event type you want to map. The name
of the EPL file that defines the selected event is displayed in the status area at the bottom
of the dialog.

c. Click OK.

7. In the Event Persistence Configuration dialog, click the Browse button next to the Database
table field. The Database Table Selection dialog opens.

8. In the Database Table Selection dialog, select the database table to which you want to map the
event's fields as follows:

Connecting Apama Applications to External Components 10.11.3 479

24 The Database Connector IAF Adapter (ADBC)

a. In theDatabase Server Details section, specify theDB URL,User Name, and Password.
By default, the DB URL uses the value used in the adapter configuration settings. You can
change the name of the database by un-checking the check box and entering a new name.
(Note, you cannot change the type of database.)

b. Click Connect to access the database.

c. Select the name of the table from the Matching Items list or enter text in the Database
Table Selection field. As you type, table names that match what you enter are shown in
the Matching Items list. When you select a table, its name is also shown on the dialog's
status line. You can turn off this display with the dialog's Down Arrow menu icon ().

d. In the Matching Items list, select the name of the database table where you want to store
the event data.

e. Click OK.

9. In the Event Persistence Configuration dialog, clickOK. The adapter editor display is updated
to show the name of the event type and the database table in the Event section. The Mapping
Rules section displays lists for Event and Database Table.

10. For each event field you want to store in the Event list click on the field and draw a line to the
desired column in the Database Table list.

When you save the adapter instance configuration, mapping rules are generated that specify the
associations between event fields and database columns. A monitor that listens for events of the
specified type is also generated. The monitor allows the Apama application to manage when the
events are written to the database.

Playback
If event data is stored in a database, you can play back the events through the correlator using the
Apama Data Player in Software AG Designer. The Data Player consists of the Query Editor and
the Data Player control. In the Query Editor, you create and modify queries in order to specify
what event data you want to play back. The Data Player control allows you to specify what query
to use and how fast to play back the event data.

For full information on the Data Player, see "Using the Data Player" in Using Apama with Software
AG Designer.

Command line tools

When you have stored event data in a database and created queries in Software AGDesigner, you
can also launch a playback session using the Data Player command line tool, adbc_management.

The adbc_management tool is described inDeploying andManagingApamaApplications, in the section
"Using the data player command-line interface".

480 Connecting Apama Applications to External Components 10.11.3

24 The Database Connector IAF Adapter (ADBC)

Sample applications
Several sample applications in the Apama installation illustrate the use of the ADBCHelper and
ADBCEventAPIs. The samples are located in the samples\adbcdirectory of theApama installation.
The api-helper-example uses the ADBCHelper API; the other examples use the ADBC Event API.
The samples include:

api-helper-example—An EPL application that shows how to open and close a database and
execute SQL commands and queries using the ADBCHelper API.

api-example—An EPL application that uses the ADBC Event API to show how to use all API
operations except those for storing data. Included is code for discovering data sources and
databases, opening and closing databases, and executing queries.

store-data—An EPL application that shows how to open a database, create a table, and store
non-event data using the ADBC Event API.

store-events—An EPL application that shows how to open a database, create a table, and
store event data using the ADBC Event API.

Format of events in .sim files
In Apama 4.1 and earlier, Apama captured data streaming through the correlator into proprietary
.sim files. These files consist of comma-delimited values. You can use the Apama's Data Player in
Software AG Designer to play back event data from existing .sim files. Note, however, that the
ADBC does not write data in .sim format.

Apama .sim files contain string versions of events and can also contain an optional header that
specifies the default time zone for the series. The time-zone identifiers can be any supported by
Java. The format of the events contained in a .sim file is:

timestamp — a float specifying UTC seconds since 01/01/1970.

event origin — a string specifying whether the event is an internal or external event.

event — a stringified version of the event itself.

Elements of the exported event are separated by commas.

The following is an example of an external event from a .sim file (each event is stored on a single
line, here they are shown on separate lines for clarity):
1161287634.200,

external,
com.apama.backtest.RawTick(

com.apama.marketdata.Tick("RACK",34.97,11,{}))

The following is an example of an internal event from a .sim file:
1161287629.600,

internal,
com.apama.backtest.RawTick(

Connecting Apama Applications to External Components 10.11.3 481

24 The Database Connector IAF Adapter (ADBC)

com.apama.marketdata.Tick("RACK",34.96,64,{}))

The events in the example are RawTick events with embedded Tick events.

The following is an example of the optional header containing a specified default time zone:
#
<Timezone=America/New_York>
#

Comments in .sim files

You can add comments when you edit .sim files. Introduce lines containing comments with either
or //.

482 Connecting Apama Applications to External Components 10.11.3

24 The Database Connector IAF Adapter (ADBC)

25 The File IAF Adapter (JMultiFileTransport)

■ File adapter plug-ins ... 484

■ File adapter service monitor files ... 485

■ Adding the File adapter to an Apama project ... 485

■ Configuring the File adapter ... 486

■ Overview of event protocol for communication with the File adapter 487

■ Opening files for reading .. 488

■ Specifying file names in OpenFileForReading events .. 490

■ Opening comma separated values (CSV) files ... 491

■ Opening fixed width files .. 492

■ Sending the read request ... 493

■ Requesting data from the file ... 493

■ Receiving data .. 493

■ Opening files for writing .. 494

■ LineWritten event .. 495

■ Monitoring the File adapter ... 496

Connecting Apama Applications to External Components 10.11.3 483

The File adapter is includedwhen you install the Apama software. Each Apama standard adapter
includes the transport and codec plug-ins it requires, alongwith any required EPL servicemonitor
files. The C++ plug-ins are located in the Apama installation's adapters\bin directory (Windows)
or adapters/lib directory (UNIX); the Java plug-ins are located in adapters\lib. The EPL files are
located in the adapters\monitors directory.

If you develop an Apama application in Software AGDesigner, when you add a standard adapter
to the project, Software AG Designer automatically creates a configuration file for it. In addition,
the standard Apama adapters include bundle files that automatically add the adapter's plug-ins
and associated service monitor files to the Apama project.

If you are not using Software AG Designer, you need to create a configuration file that will be
used by the IAF to run the adapter. Each adapter includes a template file that can be used as the
basis for the configuration file. The template files are located in the installation's adapters\config
directory andhave the forms adapter_name.xml.dist and adapter_name.static.xml. These template
files are not meant to be used as the adapters' actual configuration files - you should always make
copies of the template files before making any changes to them.

The File adapter uses the Apama Integration Adapter Framework (IAF) to read information from
text files and write information to text files by means of Apama events. This lets you read files
line-by-line from external applications orwrite formatted data as required by external applications.

With some caveats, which are mentioned later in this section, the File adapter supports reading
and writing to multiple files at the same time. Information about using the File adapter can be
found in the topics below.

JMultiFileTransport is the recommendedway to read/write files, the FileTransport/JFileTransport
is just a sample forwhich binaries are also included. See “The Basic File IAFAdapter (FileTransport/
JFileTransport)” on page 497 for more information.

File adapter plug-ins
The Apama File adapter uses the following plug-ins:

JMultiFileTransport.jar— The JMultiFileTransport plug-in manages the connections to
the files opened for reading and writing.

JFixedWidthCodec.jar or JCSVCodec.jar— These plug-ins parse lines of data in fixed-width
format or comma separated value format (CSV) into fields. For details about using these codec
plug-ins, see “The CSV codec IAF plug-in” on page 521 and “The FixedWidth codec IAF plug-
in” on page 524.

JNullCodec.jar

These plug-ins need to be specified in the IAF configuration file used to start the adapter. If you
add this adapter to an Apama project in Software AG Designer, these plug-ins are automatically
added to the configuration file. If you are not using Software AG Designer, you can use the
File.xml.dist template file as the basis for the configuration file. See “Configuring the File
adapter” on page 486 for more information about adding the necessary settings to the adapter's
configuration file.

484 Connecting Apama Applications to External Components 10.11.3

25 The File IAF Adapter (JMultiFileTransport)

File adapter service monitor files
The File adapter requires the event definitions in the followingmonitorswhich are in yourApama
installation directory. If you are using SoftwareAGDesigner, the project's default run configuration
automatically injects them. If you are not using Software AG Designer, you need to make sure
they are injected to the correlator in the order shown before running the IAF.

1. monitors\StatusSupport.mon

2. adapters\monitors\IAFStatusManager.mon

3. adapters\monitors\FileEvents.mon

4. adapters\monitors\FileStatusManager.mon

For detailed information on the file adapter, see the com.apama.file package in the API Reference
for EPL (ApamaDoc).

Adding the File adapter to an Apama project
If you are developing an application with Apama in Software AG Designer, add the File adapter
as described below.

To add the File adapter

1. In the Project Explorer, right-click the Connectivity and Adapters node and select Add
Connectivity and Adapters.

2. Select File Adapter (File adapter for reading and writing to ASCII files). A default name is
added to the Instance name field that ensures this instance of this adapter will be uniquely
identified. You can change the default name, for example, to indicate what type of external
system the adapter will connect to. You will be prevented from using a name already in use.

3. Click OK.

A File adapter entry that contains the new instance is added to the project's Connectivity and
Adapters node and the instance's configuration file is opened in Apama's adapter editor.

For the File adapter, the adapter editor's Settings tab displays a listing of General Variables.
When first created, it lists variables that are used in the Apama project's default launch
configuration. You can add variables by clicking the Add button and filling in the variable's
name and value.

For editing other configuration properties for the File adapter, display the adapter editor's
XML Source tab and add the appropriate information.

Connecting Apama Applications to External Components 10.11.3 485

25 The File IAF Adapter (JMultiFileTransport)

Configuring the File adapter
Before using the File adapter, you need to add information to the IAF configuration file used to
start the adapter. When you add an adapter to an Apama project, a configuration file for each
instance of the adapter is automatically created. Double-click the name of the adapter instance to
open the configuration file in the adapter editor.

If you are using the Apama adapter editor in Software AGDesigner, you can edit or add variables
to the General Variables section as displayed on the Settings tab. For other properties, you need
to edit the XML code directly; to do this, select the adapter editor's XML Source tab.

If you are not using Software AGDesigner, the configuration file can be derived from the template
adapters\config\File.xml.dist configuration file shipped with the Apama installation.

CAUTION:
Before changing any values, be sure tomake a copy of the File.xml.dist file and give it a unique
name, typically with an .xml extension instead of .xml.dist.

The template configuration file references the adapters\config\File-static.xml file using the
XML XInclude extension. The File-static.xml file specifies the adapter's codecs and mapping
rules. Normally you do not need to change any information in this file. The default channel for
File adapter events is FILE and the default for transportName is JMultiFileTransport. See “The
IAF configuration file” on page 339 for more information on the contents on an adapter's
configuration file.

In Software AG Designer, adapters are configured using Apama's adapter editor. To open an
adapter instance, in theProject Explorer, right-click on project_name > Adapters > File Adapter
> instance_name and select Open Instance from the pop-up menu.

You can set the variables used by the File adapter in the main Settings tab. Values of the form
${...}, such as ${DefaultCorrelator:port} are set to the correct value automatically by theApama
project's default launch configuration anddo not need to bemodified. To configure other properties
used by the adapter, edit the XML code directly by selecting the XML Source tab.

If you are not using Software AG Designer, all adapter properties are configured by editing the
adapter .xml file in an XML or text editor.

Customize the following properties:

<logging level="INFO" file="logs/FileAdapter.log"/>

Set the <classpath> elements:
<classpath path="@ADAPTERS_JARDIR@/JNullCodec.jar" />
<classpath path="@ADAPTERS_JARDIR@/JFixedWidthCodec.jar" />
<classpath path="@ADAPTERS_JARDIR@/JCSVCodec.jar" />
<classpath path="@ADAPTERS_JARDIR@/JMultiFileTransport.jar" />

Replace @ADAPTERS_JARDIR@with the actual path to the .jar files. Typically, this is the
apama_install_dir\adapters\lib directory.

486 Connecting Apama Applications to External Components 10.11.3

25 The File IAF Adapter (JMultiFileTransport)

If you are using Software AGDesigner, these jar files are automatically added to the classpath
in the configuration file and you do not need to replace the @ADAPTERS_JARDIR@ token.

In the <sink> and <source> elements, replace @CORRELATOR_HOST@ and @CORRELATOR_PORT@with
valid attribute values:

<apama>
<sinks>

<sink host="@CORRELATOR_HOST@" port="@CORRELATOR_PORT@" />
</sinks>
<sources>

<source host="@CORRELATOR_HOST@" port="@CORRELATOR_PORT@"
channels="FILE" />

</sources>
</apama>

If you are using the adapter in an Apama project, the default launch configuration uses the
default correlator host and port settings and you do not need to replace the @CORRELATOR_HOST@
and @CORRELATOR_PORT@ tokens.

<property name="simpleMode" value="false" />

Indicate whether or not to start the File adapter in simple mode. In simple mode, the File
adapter reads lines from a single file or writes lines to a single file. In non-simple mode, you
can use the fixed width or CSV codecs to decode/encode field data. Also, the File adapter can
read/write to multiple files and additional controls are available for communication between
the adapter and the correlator. Non-simple mode is recommended for most situations. Details
about simplemode andnon-simplemode are in the File.xml.distfile. If you are using Software
AG Designer, switch to the adapter editor's XML Source tab if you want to view these details
or to edit the settings.

Overview of event protocol for communication with
the File adapter
The adapters\monitors\FileEvents.mon file defines the event types for communication with the
File adapter. The following event types in the com.apama.file package are defined in the
FileEvents.mon file. These events enable I/O operations on files. See FileEvents.mon for details
about the events that are not described in the subsequent topics.

OpenFileForReading

OpenFileForWriting

FileHandle

FileLine

ReadLines

NewFileOpened

EndOfFile

Connecting Apama Applications to External Components 10.11.3 487

25 The File IAF Adapter (JMultiFileTransport)

CloseFile

FileClosed

FileError

LineWritten

See also the com.apama.file package in the API Reference for EPL (ApamaDoc).

Opening files for reading
The File adapter can read frommultiple files at the same time. Send an OpenFileForReading event
for each file you want the File adapter to read. This involves sending an event to the channel
specified in the adapter's configuration file, typically FILE, for example:
send OpenFileForReading(...) to "FILE"

See the com.apama.file package in the API Reference for EPL (ApamaDoc) for detailed information
on the OpenFileForReading event.

DescriptionParameter

Name of the transport being used within the File adapter. This
mustmatch the transport name specified in the IAF configuration
file so that the transport can recognize events intended for it.

transportName

Request identifier for this open file event. The response, which is
either a FileHandle event or a FileError event, contains this
identifier.

requestId

Name of the codec to use with the file. This must match one of the
codecs specified in the adapter-static.xml IAF configuration file.

codec

When you want the File adapter to read and write entire lines of
data just as they are, specify the null codec (JNullCodec). When
you want the File adapter to interpret file lines in some way, you
can specify either the CSV codec (JCSVCodec) or the Fixed Width
codec (JFixedWidthCodec) according to how the data in the file is
formatted. To open fixed width or CSV files, you must add some
information to the payload field of the OpenFileForReading event.
The codecs needs this information to correctly interpret the data.
For details about adding to the payloadfield, see “Opening comma
separated values (CSV) files” on page 491 or “Opening fixedwidth
files” on page 492.

Absolute path, or file pattern (for example, *.txt, *.csv) within
absolute directory path if intending to read all files matching a

filename

pattern in order of last timemodified.While a relative pathmight
work, an absolute path is recommended. A relative path must be
relative to where the IAF has been started, which can be
unpredictable. For example:

488 Connecting Apama Applications to External Components 10.11.3

25 The File IAF Adapter (JMultiFileTransport)

DescriptionParameter

c:\logfiles*.log

/user/local/jcasablancas/logfiles/*.log

For more information, see “Specifying file names in
OpenFileForReading events” on page 490.

The number of lines in the header, or 0 if there is no header. Text
files sometimes contain a number of lines at the beginning of the

linesInHeader

file that explain the format. As these are usually of some specific
format, theApamaFile adapter cannot interpret them. By skipping
these lines, the File adapter can process just the data contained in
the file.

Regular expression pattern (in the same format supported by Java)
to use to match lines to read. The File adapter reads only those

acceptedLinePattern

lines that match this pattern. To read all lines, specify an empty
string.

String dictionary for storing extra fields for use with codecs. For
fixed width files the following fields make up the payload; for
other types of files, they will be ignored.

payload

sequence<integer> fieldLengths

The length (number of characters) in each field, in order, where
the number of fields is given by fieldLengths.size()

boolean isLeftAligned

Whether the data in the field is aligned to the left or not (that
is, right aligned)

string padCharacter

The pad character used when the data is less than the width
of the field

For CSV files, the following field makes up the payload; for other
types of files it will be ignored.

string separator

The separator character

Opening files for reading with parallel processing applications
If your Apama application implements parallel processing, you may want to increase parallelism
by processing the incoming events from the File adapter in a separate, private, context, rather than
doing everything in the correlator's main context. To request that events from the File adapter are

Connecting Apama Applications to External Components 10.11.3 489

25 The File IAF Adapter (JMultiFileTransport)

sent to the private context your monitor is running in, the monitor should open the file using the
com.apama.file.OpenFileForReadingToContext event instead of OpenFileForReading. The
OpenFileForReadingToContext event has a field that contains a standard OpenFileForReading event
(see “Opening files for reading” on page 488), in addition to a field specifying the context that file
adapter events should go to for processing, (which is usually the context the monitor itself is
running in, context.current()), and the name of the channel the File adapter is using.When using
the OpenFileForReadingToContext event, the OpenFileForReadingToContext event and all other file
adapter events must not be sent directly to the adapter, but rather sent to the correlator's main
context, where the adapter service monitor runs. The File adapter's service monitor is responsible
for sending the events that are sent from other contexts to the File adapter, and for sending the
events received from the File adapter to whichever context should process them (as specified in
the OpenFileForReadingToContext event).

See the com.apama.file package in the API Reference for EPL (ApamaDoc) for detailed information
on the OpenFileForReadingToContext event.

Here is an example of how the OpenFileForReadingToContext event is used:
com.apama.file.OpenFileForReading openFileForReading :=

new com.apama.file.OpenFileForReading;
... // populate the fields of the openFileForReading event as needed
// Instead of sending openFileForReading to "FILE", wrap it in
// the OpenFileForReadingToContext event and send it to the service
// monitor in the main context.

send com.apama.file.OpenFileForReadingToContext(context.current(),
"FILE", openFileForReading) to mainContext;

com.apama.file.FileHandle readHandle;
on com.apama.file.FileHandle(
transportName=openFileForReading.transportName,
requestId=openFileForReading.requestId):readHandle

{
// Instead of sending to the "FILE" channel, send it to the main
// context
send com.apama.file.ReadLines(openFileForReading.transportName, -1,

readHandle.sessionId, 20) to mainContext;
...

}

Specifying file names in OpenFileForReading events
In an OpenFileForReading event, the value of the filename field can be a specific file name or a
wildcard pattern. However, the filename cannot have multiple wildcards.

Specific filename

When you specify a specific filename in an OpenFileForReading event, when the adapter receives
requests to read lines from the file, the adapter reads till the end of the file and waits until more
data is available. An external process, or the adapter itself, might write more data to the file if it
is open for write at the same time that it is being read. If more data becomes available, the File
adapter sends it. If the File adapter receives a CloseFile event, the File adapter closes the file
against further reading.

490 Connecting Apama Applications to External Components 10.11.3

25 The File IAF Adapter (JMultiFileTransport)

Each time the File adapter reaches the end of the file it is reading, the File adapter sends an
EndOfFile event to the correlator. If, during this process, more data was appended to the file, the
file operations will continue as normal— that is, the File adapter will sendmore lines if they were
requested. Thus, when reading specific files, file appends are acceptable and have a well defined
behavior. However, any other modifications, such as changing the lines that have already been
read, may have undefined results. An application can ignore or react to an EndOfFile event. See
the com.apama.file package in the API Reference for EPL (ApamaDoc) for detailed information on
the EndOfFile event.

Wildcard filenames

Now suppose that in an OpenFileForReading event, the value of the filename field is a wildcard
pattern. In this case, the adapter does the following:

1. Opens a new file that matches the pattern

2. Reads that file in its entirety

3. Sends back an EndOfFile event

4. Opens the next file that matches the pattern if one is available

For the application's information, the File adapter sends back an event when it opens each new
file. The NewFileOpened event contains the name of the file thatwas opened. See the com.apama.file
package in the API Reference for EPL (ApamaDoc) for detailed information on the NewFileOpened
event.

The order of opening the files that match the wildcard pattern is not specified. Currently, the files
are ordered by the modification date and then alphabetically by filename.

If a file that has been previously read is externallymodified (while in themeantime, the File adapter
is reading from other files that match the wildcard pattern), the file is read again in its entirety.
That is, any files that are modified after reading from themwill be read again (until the CloseFile
is sent). Note that this includes file appends.

Opening comma separated values (CSV) files
An example of defining an OpenFileForReading event that opens a CSV file so that each field is
automatically parsed appears below. The additional data required by the CSV codec is stored in
the payload dictionary.
com.apama.file.OpenFileForReading openCSVFileRead :=

new com.apama.file.OpenFileForReading;

//matches transport in IAF config
openCSVFileRead.transportName := JMultiFileTransport;

//the request id to use
openCSVFileRead.requestId := integer.incrementCounter("FileTransport.requestId");

//read using JCSVCodec
openCSVFileRead.codec := "JCSVCodec";

Connecting Apama Applications to External Components 10.11.3 491

25 The File IAF Adapter (JMultiFileTransport)

//file to read
openCSVFileRead.filename := "/usr/home/formby/stocktick.csv";

//separator char is a ","
openCSVFileRead.payload["separator"] := ",";

//send event to channel in config.
send openCSVFileRead to "FILE";

Subsequently, when the File adapter receives FileLine events, the adapter stores each field in the
data sequence in order. You can access the ones you are interested in.

For details about using the CSV codec, see “The CSV codec IAF plug-in” on page 521.

Opening fixed width files
An example of defining an OpenFileForReading event that opens a fixed width file so that each
field is automatically parsed appears below. The additional data required by the Fixed Width
codec is stored in the payload dictionary.
com.apama.file.OpenFileForReading openFixedFileRead :=

new com.apama.file.OpenFileForReading;

//matches transport in IAF instance
openFixedFileRead.transportName := JMultiFileTransport;

//the request id to use
openFixedFileRead.requestId := integer.incrementCounter("FileTransport.requestId");

//read using CSV Codec
openFixedFileRead.codec := "JFixedWidthCodec";

//file to read
openFixedFileRead.filename := "/usr/home/formby/stocktick.txt";
//additional data required to interpret fixed width data

//sequence of field lengths
openFixedFileRead.payload["fieldLengths"] := "[6,4,9,9,9]";

//it is left aligned
openFixedFileRead.payload["isLeftAligned"] := "true";

//the pad character
openFixedFileRead.payload["padCharacter"] := "_";

//send event to channel in config.
send openFixedFileRead to "FILE";

Subsequently, when the File adapter receives FileLine events, the adapter stores each field in the
data sequence in order. You can access the ones you are interested in.

For details about using the Fixed Width codec, see “The Fixed Width codec IAF plug-in” on
page 524.

492 Connecting Apama Applications to External Components 10.11.3

25 The File IAF Adapter (JMultiFileTransport)

Sending the read request
After you construct an OpenFileForReading event, send it to the "FILE" channel. For example:
com.apama.file.OpenFileForReading openFileWeWantToRead :=

new com.apama.file.OpenFileForReading;

//populate the openFileWeWantToRead event
//..
//..
send openFileWeWantToRead to "FILE";

Sending an OpenFileForReading event from EPL code signals the File adapter to open the file. If
the open operation is successful, the File adapter returns a FileHandle event.

The sessionId is the most important field; all communication related to this file references this
value.

If the open operation is unsuccessful, the File adapter returns a FileError event.

See the com.apama.file package in the API Reference for EPL (ApamaDoc) for detailed information
on the FileHandle and FileError events.

Requesting data from the file
After your application receives a FileHandle event, it can send a ReadLines event, which signals
the adapter to start reading lines from the file. See the com.apama.file package in theAPI Reference
for EPL (ApamaDoc) for detailed information on the ReadLines event.

The sessionId in the ReadLines event must be the same as the sessionId stored in the FileHandle
event that the application received when the file was opened.

The adapter tries to read as many lines as specified in the ReadLines event. If the file does not
contain that many lines, what the adapter does depends on whether the original OpenFileToRead
event specified a specific file or a wildcard pattern. According to that setting, the adapter either
waits until the file contains more data, or tries to open a new file to deliver the balance from.

Receiving data
As the File adapter reads the file, it returns FileLine events to your application. Each line is
associated with a specific sessionId, and the data is stored within a sequence of strings. See the
com.apama.file package in the API Reference for EPL (ApamaDoc) for detailed information on the
FileLine event.

Notice that the data field is a sequence of strings, rather than a string. However, when you use
the null codec for reading, the sequence contains only one element, which contains the entire line
read:
//the whole line is stored in the first element, we used null codec
string line := fileLine.data[0];

Connecting Apama Applications to External Components 10.11.3 493

25 The File IAF Adapter (JMultiFileTransport)

For specialized codecs, each field is in a discrete element in the sequence:
//The app knows which field contains the data we are interested in:
string symbol := fileLine.data[0];
string exchange := fileLine.data[1];
string currentprice := fileLine.data[2];
//and so on

After the File adapter opens a file for reading, the file remains open as long as the adapter is
running. If you want to close a file, you must send a CloseFile event that specifies the sessionId
of the file you want to close. For example, if you want to replace the contents of a file, you must
close the file before you send an OpenFileForWriting event. See the com.apama.file package in
the API Reference for EPL (ApamaDoc) for detailed information on the CloseFile event.

If there is an error, the File adapter sends a FileError event. Otherwise, the File adapter closes the
file and sends a FileClosed event, and then it is available to be opened again for writing or for
reading.

Opening files for writing
To open a file for writing, send an OpenFileForWriting event. The definition of the
OpenFileForWriting event is similar to the definition of the OpenFileForReading event. See the
com.apama.file package in the API Reference for EPL (ApamaDoc) for detailed information on the
OpenFileForWriting event.

The procedure for opening a file for writing CSV or fixed width files is effectively the same as for
reading. Specify the relevant fields in the payload to describe the format of the file you want to
write. When subsequently sending FileLine events, populate the data sequence field with the
data for each field.

Again, once constructed, send the OpenFileForWriting event to the "FILE" channel, for example:
send OpenFileForWriting(...) to "FILE"

For fixed width files, you can construct a more complex OpenFileForWriting event in a similar
way to that described in “Opening fixed width files” on page 492.

Again, as with reading a file, the File adapter sends a FileHandle or FileError event (see “Sending
the read request” on page 493), which your application should listen for, filtering on the requestId
for the FileHandle event you are interested in.

Once a FileHandle event has been received, the file has successfully opened and the application
can begin to send FileLine events to bewritten. See the com.apama.filepackage in theAPI Reference
for EPL (ApamaDoc) for detailed information on the FileLine event.

Notice that the data field is a sequence of strings, rather than a string. This allows you to have the
fields you want to write as separate entries in the sequence, and it lets the File adapter format the
sequence for writing according to the chosen codec. For the fixed width codec, the number of
elements in the sequence should match the number of fields originally specified when opening
the file. For the null codec, if the sequence contains more than one element, each field will be
written out using a separator defined in the IAF configuration file. This separator can be blank,

494 Connecting Apama Applications to External Components 10.11.3

25 The File IAF Adapter (JMultiFileTransport)

in which case each element will be written out immediately after the previous one, with a newline
after the last element.

The FileLine event is exactly the same as the one received when reading; however, the requestId
takes on a more important role. If you specify a positive requestId, your application receives an
acknowledgment

When a file is already open for reading, you can write to that file only by appending new data.
Of course, you must send an OpenFileForWriting event, and then the File adapter can process
FileLine events for writing to that file. You receive a FileError event if the file is open for reading
and for writing and you try to write data into the file but not by appending the new data.

Opening files for writing with parallel processing applications
If your Apama application implements parallel processing, you may want to increase parallelism
by processing the incoming events from the File adapter in a separate, private, context, rather than
doing everything in the correlator's main context. To request that events from the File adapter are
sent to the private context your monitor is running in, the monitor should open the file using the
com.apama.file.OpenFileForWritingToContext event instead of OpenFileForWriting. The
OpenFileForWritingToContext event has a field that contains a standard OpenFileForWriting event
(see “Opening files for writing” on page 494), in addition to a field specifying the context that file
adapter events should go to for processing, (which is usually the context the monitor itself is
running in, context.current()), and the name of the channel the File adapter is using.When using
the OpenFileForWritingToContext event, the OpenFileForWritingToContext event and all other
File adapter events must not be sent directly to the adapter, but rather sent to the correlator's main
context, where the adapter service monitor runs. The File adapter's service monitor is responsible
for sending the events that are sent from other contexts to the File adapter, and for sending the
events received from the File adapter to whichever context should process them (as specified in
the OpenFileForWritingToContext event).

See the com.apama.file package in the API Reference for EPL (ApamaDoc) for detailed information
on the OpenFileForWritingToContext event.

Using the OpenFileForWritingToContext event is similar to using the OpenFileForReadingToContext
event. See “Opening files for reading with parallel processing applications” on page 489 for an
example use of the OpenFileForReadingToContext event.

LineWritten event
After the File adapter writes a line to a file, the adapter sends a LineWritten event. See the
com.apama.file package in the API Reference for EPL (ApamaDoc) for detailed information on the
LineWritten event.

This is useful when you want your application to send FileLine events in a batch to control flow.
If you need to do flow control, you would typically set all the requestIds to positive values and
send the next FileLine events only after receiving the LineWritten notification for the previous
FileLine event you sent. If you do not need to do flow control, you could set requestId=-1 for all
but the last FileLine event, but set it to a positive value for the very last FileLine event so you
get a single LineWritten notification when everything has been written.

Connecting Apama Applications to External Components 10.11.3 495

25 The File IAF Adapter (JMultiFileTransport)

The file remains open for the lifetime of the adapter unless you send a CloseFile event. See also
“Opening files for reading” on page 488.

Monitoring the File adapter
You can use the File adapter status manager (FileStatusManager.mon in the adapters\monitors
directory) to monitor the state of the File adapter.

The File adapter sends status events to the correlator, some of which are asynchronous (not
requested) status messages. This occurs as a result of connection status changes, which happen in
response to a file being closed or opened.

For single files, the File adapter sends an AdapterConnectionOpenedEventwhen it opens a new file
for reading or writing, and an AdapterConnectionClosedEventwhen it closes a file. When the File
adapter uses awildcard pattern to open a series of files, in addition to those events, the File adapter
sends an AdapterConnectionClosedEvent event after it has read everything in a file, and an
AdapterConnectionOpenedEvent event when it opens the next file. This is an analogous pattern to
the EndOfFile and NewFileOpened events sent by the adapter itself.

496 Connecting Apama Applications to External Components 10.11.3

25 The File IAF Adapter (JMultiFileTransport)

26 The Basic File IAF Adapter (FileTransport/

JFileTransport)
The FileTransport/JFileTransport transport layer plug-ins can read and write messages both
from and to a text file. This makes it very convenient for testing string encoding and decoding,
semantic mappings, and EPL code, because a text file with some sample messages can be put
together quickly and then run through the IAF. Similarly in the upstream direction it allows
messages to be written to a file instead of an external message sink such as a middleware message
bus.

Messages (or events) are read from and written to named files. Each line of the input file is taken
to be a single input event. Each output event is written to a new line of the output file.

In order to load this plug-in, the <transport> element in the adapter's configuration file must load
the FileTransport library (this represents the filename of the library that implements the plug-in).
Note that for the Java version, the full path to the plug-in's .jar file must be specified.

A configuration file for C/C++ would use this:
<transport name="FileTransport" library="FileTransport">

In a configuration file for Java:
<transport name="JFileTransport"

jarName="Apama_install_dir\lib\JFileAdapter.jar"
className="com.apama.iaf.transport.file.JFileTransport">

The File Transport plug-in takes the following properties:

input— Specifies the name of the input file.

output— Specifies the name of the output file.

cycle— Specifies the number of times that the plug-in should cycle through the input file.
Any value less than zero causes the plug-in to cycle endlessly, until the adapter is either shut
down or re-configured. A zero value (the default if the property ismissing)means “no cycling”
and results in the same behavior as if the value of this property was 1.

For more information on specifying plug-ins in an adapter's configuration file, see “Transport and
codec plug-in configuration” on page 340.

The plug-in automatically stops after reading the entire input file the requested number of times.
If the adapter is subsequently asked to reload its configuration, the plug-in starts running again,

Connecting Apama Applications to External Components 10.11.3 497

using the current property values in the configuration file. If the adapter configuration is reloaded
while the plug-in is running, the new configuration will not take effect until the plug-in reaches
the end of the current input file. In this case, a second reload request is required before the plug-in
will actually start reading the new file.

By default, the File Transport plug-in always communicateswith the event codec using Java String
objects. Therefore, the String Codec plug-in is a suitable companion as it provides a mechanism
for converting between String objects and normalized events.

There are some minor differences between the C and Java implementations:

In the C version, if no input filename is specified, the standard input stream is used; similarly
if no output filename is specified the standard output stream is used.

In the Java version, there is an extra property called upstreamNormalised. If this is specified
and set to true, the File Transport communicates with its codec using NormalisedEvent objects
rather than String objects. In this configuration it should be used with the JNullCodec, which
does not perform any encoding or decoding but simply passes the unchanged NormalisedEvent
objects between the codec and transport layers. If upstreamNormalised is set to true, the File
Transport uses the functionality of the JStringCodec class to perform encoding/decoding, and
all the properties available for use with the JStringCodec plug-in class can be specified as
properties to the JFileTransport.

This is one of the sample plug-ins for which source code is available – see “IAF samples” on
page 364 for more information.

JMultiFileTransport is the recommendedway to read/write files, the FileTransport/JFileTransport
is just a sample for which binaries are also included. See “The File IAF Adapter
(JMultiFileTransport)” on page 483 for more information.

498 Connecting Apama Applications to External Components 10.11.3

26 The Basic File IAF Adapter (FileTransport/JFileTransport)

27 Codec IAF Plug-ins

■ The String codec IAF plug-in .. 500

■ The Null codec IAF plug-in ... 501

■ The Filter codec IAF plug-in ... 503

■ The XML codec IAF plug-in .. 507

■ The CSV codec IAF plug-in .. 521

■ The Fixed Width codec IAF plug-in .. 524

Connecting Apama Applications to External Components 10.11.3 499

Apama provides several standard codec IAF plug-ins for your convenience, which can be used
for testing or in combination with custom plug-ins. They are described in the topics below.

The compiled binaries for all the standard plug-ins are available in the \bin and \lib directories
(for the C and Java versions respectively).

Information on where to find the source code and how to build those plug-ins for which source
code is available can be found in “IAF samples” on page 364.

The String codec IAF plug-in
The StringCodec/JStringCodec codec plug-ins read transport events as simple text strings and
breaks them into fields, names and values, using delimiter strings supplied by configuration
properties.

Events are assumed to have the following general format:
<name1><sepA><value1><sepB><name2><sepA><value2><sepB>
...
<namen><sepA><valuen><terminator>

where <name> corresponds to the field name, followed by a delimiter character or string <sepA>,
followed by the field's value, <value>. The complete <name> and <value> pair is then separated
from another such sequence by a <sepB> delimiter. This pattern is assumed to repeat itself.

Fieldswith empty values are permitted. Because the terminator is optional, the codecwill consume
names and values up to the end of the input string if no terminator is found.

In order to load this plug-in, the <codecs> element in the adapter's configuration file must load
the StringCodec library (this represents the filename of the library that implements the plug-in).
Note that for the Java version, the full path to the plug-in's .jar file must be specified.

A configuration file for C/C++ would use this:
<codec name="StringCodec" library="StringCodec">

In a configuration file for Java:
<codec name="JStringCodec"

jarName="Apama_install_dir\lib\JFileAdapter.jar"
className="com.apama.iaf.codec.string.JStringCodec">

The String codec plug-in takes the following properties:

NameValueSeparator— The string used to separate names and values (<sepA> above).

FieldSeparator— The string used to separate fields (<sepB> above).

Terminator— The string used to mark the end of the event string.

All properties must be specified in the adapter configuration file.

Formore information on specifying plug-ins in an adapter's configuration file, see “Transport and
codec plug-in configuration” on page 340.

500 Connecting Apama Applications to External Components 10.11.3

27 Codec IAF Plug-ins

This is one of the sample plug-ins for which source code is available – see the “IAF samples” on
page 364 for more information.

The Null codec IAF plug-in
The NullCodec/JNullCodec codec layer plug-ins are very useful in situations where it does not
make sense to decouple the transport and codec layers. The transport layer plug-in might be best
placed to perform all the necessary encoding and/or decoding of events, and to supply and receive
Apama normalized events, rather than custom transport-specific messages.

The Null codec plug-in is provided to make it easy to develop such transport plug-ins. This is a
trivial codec layer plug-in that passes downstream normalized events from the transport layer to
the SemanticMapper, and upstreamnormalized events from the SemanticMapper to the transport
layer with no modification.

In order to load this plug-in, the <codec> element in the adapter's configuration file needs to load
the NullCodec or JNullCodec library (this represents the filename of the library that implements
the plug-in). Note that for the Java version, the full path to the plug-in's .jar file needs to be
specified.

A configuration file for C/C++ uses this:
<codec name="NullCodec" library="NullCodec">

In a configuration file for Java:
<codec name="JNullCodec"

jarName="Apama_install_dir\lib\JNullCodec.jar"
className="com.apama.iaf.codec.nullcodec.JNullCodec">

Note:
The NullCodec and JNullCodecplug-ins can only be usedwith transport plug-ins that understand
NormalisedEvent objects. The Null codec plug-ins expect downstream NormalisedEvent objects
from the transport and pass upstream NormalisedEvent objects it receives directly to the transport
plug-in. Using the Null codec plug-ins with a transport that expects any other kind of object
does not work and can possibly crash the adapter.

Null codec transport-related properties
This codec plug-in supports standard Apama properties that are used to specify the name of the
transport that will send upstream messages.

Transport-related properties

transportName. This property specifies the transport that the codec should send upstream
events to. The property can be used multiple times. The codec maintains a list of all transport
names specified in the IAF configuration file. A transportName property with an empty value
is ignored by the codec.

Connecting Apama Applications to External Components 10.11.3 501

27 Codec IAF Plug-ins

If no transports are provided in the configuration file then the codec saves the last added
EventTransport as the default transport. An upstream event is sent to the default transport if
no transport information is provided in the normalized event or in the IAF configuration file.

transportFieldName. This property specifies the name of the normalized event fieldwhose
value gives the name of the transport that the codec should send the upstream event to. You
can also provide a transport name by specifying a value in the __transport field. Empty values
of these fields are ignored and treated as if not present.

removeTransportField. The value of this property specifies whether the transport related
fields should be removed from the upstream event before sending it to transport. The default
value is true. If the property is set then the field specified by the transportFieldName property
and the field named __transport are removed from the upstream event if they are present.
Values 'yes', 'y', 'true', 't', '1' ignore cases and are treated as true for this property; any other
value is treated as false.

Upstream behavior

The plug-in's behavior when an upstream event is received proceeds in this order:

1. The codec gets the name of the field that contains the transport name from the value of
transportFieldName property. From the specified field, the codec then gets the transport name
and sends the event to that transport. If the transportFieldName property is not specified, if
the value of the property is empty, if the field is not present in the event, or if the transport
name is empty then codec tries [2].

For example, the following configuration specifies two transports and the filter codec specifies
a transport field named TRANSPORT:
<transports>

<transport name="MARKET_DATA" library="transport-lib">
<property name="Host" value="datahost.com" />
<property name="Port" value="444" />

</transport>
<transport name="ORDER_MANAGEMENT" library="transport-lib">

<property name="Host" value="orderhost.com" />
<property name="Port" value="1234" />

</transport>
</transports>
<codecs>

<codec name="NullCodec" library="NullCodec">
<property name="transportFieldName" value="TRANSPORT"/>
...

</codec>
</codecs>

The IAF can now route any upstream event that defines a TRANSPORT field to one of these two
transports. The value of the TRANSPORTfield, either MARKET_DATA or ORDER_MANAGEMENT, determines
the transport. Note: If the removeTransportField property is set true or not defined, then the
TRANSPORT field and __transportwill be removed (if present) from the upstream event before
sending it to transport.

502 Connecting Apama Applications to External Components 10.11.3

27 Codec IAF Plug-ins

2. The codec gets the transport name from the _transport field of the normalized event and sends
the event to specified transport. If the _transport field is not present or if the transport name
specified is empty, the codec then tries [3].

For example, in the above configuration, consider an upstream event that does not have a
TRANSPORT field or the value of the field is empty. If this event has a value in the __transport
field of either MARKET_DATA or ORDER_MANAGEMENT, then that value determines the transport.

3. The codec loops through all transports specified in the transportName property and sends the
event to the transport. If no transport is specified then the codec tries [4]. Note that the codec
ignores all transport names that are empty.

If an exception occurswhile sending the event to any transport, then the codec logs the exception
and continues sending events to the remaining transports. If the codec was able to send the
event to at least one transport, then it does not throws an exception; otherwise, it throws the
last captured exception.

For example, the following configuration specifies two transports:
<transports>

<transport name="MARKET_DATA" library="transport-lib">
<property name="Host" value="datahost.com" />
<property name="Port" value="444" />

</transport>
<transport name="ORDER_MANAGEMENT" library="transport-lib">

<property name="Host" value="orderhost.com" />
<property name="Port" value="1234" />

</transport>
</transports>
<codecs>

<codec name="NullCodec" library="NullCodec">
<property name="transportName" value="ORDER_MANAGEMENT"/>
...

</codec>
</codecs>

In this example, the codec has not defined the transportFieldNameproperty. The IAFwill route
any upstream event that does not contain a __transport field or has empty value in that field
to the ORDER_MANAGEMENT transport.

4. If a default transport name is present, then the codec sends the event to that transport. The
default transport is the last-added transport. If a default transport is also not found then, it
throws an exception.

The Filter codec IAF plug-in
The Apama Filter codec plug-ins filter normalized event fields. You can use the Filter codec to:

Route upstream events to particular transports

Remove particular fields from upstream and/or downstream events

To use the Filter codec, the FilterCodec or JFilterCodec library must be available to the IAF at
runtime. These are the filenames of the C++ and Java libraries that implements the plug-in.

Connecting Apama Applications to External Components 10.11.3 503

27 Codec IAF Plug-ins

In order to load this plug-in, the <codec> element in the adapter's configuration file needs to load
either the FilterCodec or JFilterCodec library. Note that for the Java version, the full path to the
plug-in's .jar file needs to be specified.

A configuration file for C/C++ uses this:
<codec name="FilterCodec" library="FilterCodec">

In a configuration file for Java:
<codec name="JFilterCodec"

jarName="Apama_install_dir\lib\JFilterCodec.jar"
className="com.apama.iaf.codec.filtercodec.JFilterCodec">

To configure the Filter codec, add the following to the <codecs> section of the IAF configuration
file:
<codec name="FilterCodec" library="FilterCodec">
<property name="transportFieldName" value="transport_field_name"/>
<property name="filter_spec_1" value="filter_condition_1"/>
<property name="filter_spec_2" value="filter_condition_2"/>

...
<property name="filter_spec_n" value="filter_condition_n"/>

</codec>

Details for replacing the variables in the above codec section are in the topics below.

Filter codec transport-related properties
This codec plug-in supports standard Apama properties that are used to specify the name of the
transport that will send upstream messages.

Transport-related properties

transportName. This property specifies the transport that the codec should send upstream
events to. The property can be used multiple times. The codec maintains a list of all transport
names specified in the IAF configuration file. A transportName property with an empty value
is ignored by the codec.

If no transports are provided in the configuration file then the codec saves the last added
EventTransport as the default transport. An upstream event is sent to the default transport if
no transport information is provided in the normalized event or in the IAF configuration file.

transportFieldName. This property specifies the name of the normalized event fieldwhose
value gives the name of the transport that the codec should send the upstream event to. You
can also provide a transport name by specifying a value in the __transport field. Empty values
of these fields are ignored and treated as if not present.

removeTransportField. The value of this property specifies whether the transport related
fields should be removed from the upstream event before sending it to transport. The default
value is true. If the property is set then the field specified by the transportFieldName property
and the field named __transport are removed from the upstream event if they are present.

504 Connecting Apama Applications to External Components 10.11.3

27 Codec IAF Plug-ins

Values 'yes', 'y', 'true', 't', '1' ignore cases and are treated as true for this property; any other
value is treated as false.

Upstream behavior

The plug-in's behavior when an upstream event is received proceeds in this order:

1. The codec gets the name of the field that contains the transport name from the value of
transportFieldName property. From the specified field, the codec then gets the transport name
and sends the event to that transport. If the transportFieldName property is not specified, if
the value of the property is empty, if the field is not present in the event, or if the transport
name is empty then codec tries [2].

For example, the following configuration specifies two transports and the Filter codec specifies
a transport field named TRANSPORT:
<transports>

<transport name="MARKET_DATA" library="transport-lib">
<property name="Host" value="datahost.com" />
<property name="Port" value="444" />

</transport>
<transport name="ORDER_MANAGEMENT" library="transport-lib">

<property name="Host" value="orderhost.com" />
<property name="Port" value="1234" />

</transport>
</transports>
<codecs>

<codec name="FilterCodec" library="FilterCodec">
<property name="transportFieldName" value="TRANSPORT"/>
...

</codec>
</codecs>

The IAF can now route any upstream event that defines a TRANSPORT field to one of these two
transports. The value of the TRANSPORTfield, either MARKET_DATA or ORDER_MANAGEMENT, determines
the transport. Note: If the removeTransportField property is set true or not defined, then the
TRANSPORT field and __transportwill be removed (if present) from the upstream event before
sending it to transport.

2. The codec gets the transport name from the _transport field of the normalized event and sends
the event to specified transport. If the _transport field is not present or if the transport name
specified is empty, the codec then tries [3].

For example, in the above configuration, consider an upstream event that does not have a
TRANSPORT field or the value of the field is empty. If this event has a value in the __transport
field of either MARKET_DATA or ORDER_MANAGEMENT, then that value determines the transport.

3. The codec loops through all transports specified in the transportName property and sends the
event to the transport. If no transport is specified then the codec tries [4]. Note that the codec
ignores all transport names that are empty.

If an exception occurswhile sending the event to any transport, then the codec logs the exception
and continues sending events to the remaining transports. If the codec was able to send the

Connecting Apama Applications to External Components 10.11.3 505

27 Codec IAF Plug-ins

event to at least one transport, then it does not throws an exception; otherwise, it throws the
last captured exception.

For example, the following configuration specifies two transports:
<transports>

<transport name="MARKET_DATA" library="transport-lib">
<property name="Host" value="datahost.com" />
<property name="Port" value="444" />

</transport>
<transport name="ORDER_MANAGEMENT" library="transport-lib">

<property name="Host" value="orderhost.com" />
<property name="Port" value="1234" />

</transport>
</transports>
<codecs>

<codec name="FilterCodec" library="FilterCodec">
<property name="transportName" value="ORDER_MANAGEMENT"/>
...

</codec>
</codecs>

In this example, the codec has not defined the transportFieldNameproperty. The IAFwill route
any upstream event that does not contain a __transport field or has empty value in that field
to the ORDER_MANAGEMENT transport.

4. If a default transport name is present, then the codec sends the event to that transport. The
default transport is the last-added transport. If a default transport is also not found then, it
throws an exception.

Specifying filters for the Filter codec
You specify each filter as a codec property. The Filter codec plug-in applies each filter you specify
to incoming and outgoing events as they pass through the codec. The property name identifies
the field(s) that the filter applies to and the property value specifies the condition that must be
true for the filter to operate.

The general syntax of a filter specification is:
<property name="filter[.direction][.field_name]" value="condition" />

DescriptionSyntax Element

Indicates the direction of the events that the filter applies to. Specify
downstream, upstream, or both. The default is both.

direction

Identifies the field that the filter applies to. The default is that the filter
applies to all fields in the event.

field_name

Specifies the value that the fieldmust have that causes it to be removed
from the event.

condition

506 Connecting Apama Applications to External Components 10.11.3

27 Codec IAF Plug-ins

Examples of filter specifications
The following filter removes the price field from upstream events when the value of the price
field is 0.0:
<property name="filter.upstream.price" value="0.0"/>

The following filter removes the name field fromupstream and downstream eventswhen the value
of the name field is NULL:
<property name="filter.both.name" value="NULL"/>

In upstream events, the following filter removes each field in which the value is 55:
<property name="filter.upstream" value="55"/>

In upstream and downstream events, the following filter removes each field in which the value
is <remove>:
<property name="filter" value="<remove>"/>

The XML codec IAF plug-in
The Apama XML codec converts messages between the following two formats:

IAF normalized event whose field values are strings that contain XML data.

Normalized event in which each field is a name/value pair. These unordered fields contain
elements, attributes, CDATA, and text.

To use the XML codec, you must add some information to the IAF configuration file and then set
up the classpath. After you do this, you can launch the adapter by running the IAF executable.

For an example configuration file, see adapters\config\XMLCodec-example.xml.dist in theApama
installation directory. This file can be changed as required for the purposes of your data and the
content added to the adapter configuration file in which the codec is to be used.

Connecting Apama Applications to External Components 10.11.3 507

27 Codec IAF Plug-ins

Use the information in the topics below to help you configure the XML codec.

Supported XML features
The XML codec can convert messages that contain the following:

Elements

Attributes

Text nodes

CDATA nodes, including CDATA nodes that contain an XML document to be parsed

CDATA nodes are supported only in the downstream direction.

Namespace prefixes and definitions (only basic support)

XPath expressions, including functions

Result types of XPath expressions must be simple. For example,

string contains();

The XML codec cannot convert XML data that contains the following XML features:

Document type specifiers

Processing instructions

Notations and entities

XML with more than one top-level (root) element

Node or nodeset XPath expressions

For Node or nodeset XPath expressions, only the first match is returned.

Adding XML codec to adapter configuration
To include the XML codec in the adapter configuration, add the following to the <codecs> section
of the IAF configuration file:
<codec name="XMLCodec"

className="com.apama.iaf.codec.xml.XMLCodec"
jarName="@ADAPTERS_JARDIR@\XMLCodec.jar"
>
<!-- Properties go here -->

</codec>

Typically, @ADAPTERS_JARDIR@ is the APAMA_HOME\adapters\lib directory.

For details about the properties that you can specify, see “Specifying XML codec properties” on
page 510.

508 Connecting Apama Applications to External Components 10.11.3

27 Codec IAF Plug-ins

Setting up the classpath
To use the XML codec, ensure the following JAR files in the APAMA_HOME\lib directory are in the
adapter classpath when you run the IAF.
ap-iaf-extension-api.jar
ap-util.jar
jdom.1.0.jar

If the XML codec JAR file is in the APAMA_HOME\adapters\lib directory, you are all set. The IAF
finds these dependencies automatically. Otherwise, set the classpath either as an environment
variable or in the <java> section of the IAF configuration file.

About the XML parser
On startup, the XML codec logs the names of the classes it is using for XML parsing and XML
generation. For example:
INFO [11808] - XMLCodec: Encoder initialized: using XML Document builder

'org.apache.xerces.jaxp.DocumentBuilderImpl'
INFO [11808] - XMLCodec: Decoder initialized: using Streaming API for XML (StAX)

'com.ctc.wstx.stax.WstxInputFactory'

Apama uses Xerces for encoding (creating XMLdocs) andWoodstox StAX for decoding (parsing).

XML namespace support

If your application relies on the standard XML parsing/generation behavior (that is, not XPath)
there is no concept of "declaring namespaces" in the XML codec nor is it required as long as the
XML document is valid (that is, it declares any namespace prefixes it uses) then you can just use
namespaceprefix:elementNamewhen referring to elements in your mapping rules. If there is any
doubt, you can run your samplemessage through the XMLCodec property logFlattenedXML=true
and it will show you what to specify in your mapping rules, for example, consider the following
sample message:
<h:table xmlns:h="http://www.myco.com/apama/test/testnamespace_h/"

xmlns="http://www.myco.com/apama/test/testnamespace_default">
<h:tr>
<h:td>Apples</h:td>
<td>Bananas</td>
</h:tr>
</h:table>

With the above sample message you could use mapping rules such as:
<map type="string" default="" apama="default_namespace"

transport="Body.h:table/@xmlns"/>
<map type="string" default="" apama="prefix_namespace"

transport="Body.h:table/@xmlns:h"/>
<map type="string" default="" apama="prefixed_element_text"

transport="Body.h:table/h:tr/h:td/text()"/>
<map type="string" default="" apama="non_prefixed_element_text"

transport="Body.h:table/h:tr/td/text()"/>

Connecting Apama Applications to External Components 10.11.3 509

27 Codec IAF Plug-ins

If you use XPath in your application, XPath itself contains operators to access the local
(non-namespace) name and namespace URI of any XML content. However it is often convenient
to define some global prefixes to make it easier to refer to namespaced elements. Apama supports
this by allowing any number of XPathNamespace:myprefix codec properties, whose value is the
URN that the specified prefix should point to. For example,
<property name="XPathNamespace:b" value="urn:xmlns:mynamespace"/>

would allow XPath expressions to use "b" to refer to elements in the "mynamespace" namespace:
<property name="XPath:Test.root/b:elementname/text()"/>

Specifying XML codec properties
In the XML codec section of the IAF configuration file, you can set a number of XML properties.
For details about setting properties in the IAF configuration file, see “Plug-in <property>
elements” on page 341.

When you reload the IAF, any changes to these configuration properties take effect in the codec.
In addition to specifying these properties, youmust also set up eventmappings for XMLmessages.
See “Event mappings configuration” on page 343.

Properties are described in the topics below.

Required XML codec properties

The XML codec requires you to set the XMLField and transportName properties. All other properties
are optional.

XMLField— This property identifies the field name that XML will be read from when decoding,
and will be written to when encoding. The flattened XML representation is stored in fields with
names prefixed with the value you specify for the XMLField property.

When you are familiar with how the XML codec behaves, you can specify the XMLField property
multiple times to parse/generate multiple XML documents per event. Parsing follows the order
in which XMLField properties appear, and generating XML follows the reverse order.

It is possible to use this mechanism to parse an XML string embedded as CDATA in another XML
string. To do this, specify the flattened field name of the CDATA node as an XMLField. However,
note that sequence fields across separate CDATA nodes are not supported.

transportName— The XML codec sends upstream events to the transport that this property
identifies. This transport must be defined in the same IAF configuration file.

XML codec transport-related properties

This codec plug-in supports standard Apama properties that are used to specify the name of the
transport that will send upstream messages.

510 Connecting Apama Applications to External Components 10.11.3

27 Codec IAF Plug-ins

Transport-related properties

transportName. This property specifies the transport that the codec should send upstream
events to. The property can be used multiple times. The codec maintains a list of all transport
names specified in the IAF configuration file. A transportName property with an empty value
is ignored by the codec.

If no transports are provided in the configuration file then the codec saves the last added
EventTransport as the default transport. An upstream event is sent to the default transport if
no transport information is provided in the normalized event or in the IAF configuration file.

transportFieldName. This property specifies the name of the normalized event fieldwhose
value gives the name of the transport that the codec should send the upstream event to. You
can also provide a transport name by specifying a value in the __transport field. Empty values
of these fields are ignored and treated as if not present.

removeTransportField. The value of this property specifies whether the transport related
fields should be removed from the upstream event before sending it to transport. The default
value is true. If the property is set then the field specified by the transportFieldName property
and the field named __transport are removed from the upstream event if they are present.
Values 'yes', 'y', 'true', 't', '1' ignore cases and are treated as true for this property; any other
value is treated as false.

Upstream behavior

The plug-in's behavior when an upstream event is received proceeds in this order:

1. The codec gets the name of the field that contains the transport name from the value of
transportFieldName property. From the specified field, the codec then gets the transport name
and sends the event to that transport. If the transportFieldName property is not specified, if
the value of the property is empty, if the field is not present in the event, or if the transport
name is empty then codec tries [2].

For example, the following configuration specifies two transports and the filter codec specifies
a transport field named TRANSPORT:
<transports>

<transport name="MARKET_DATA" library="transport-lib">
<property name="Host" value="datahost.com" />
<property name="Port" value="444" />

</transport>
<transport name="ORDER_MANAGEMENT" library="transport-lib">

<property name="Host" value="orderhost.com" />
<property name="Port" value="1234" />

</transport>
</transports>
<codecs>

<codec name="XMLCodec"
className="com.apama.iaf.codec.xml.XMLCode"
jarName=""@ADAPTERS_JARDIR@\XMLCodec.jar">

<property name="transportFieldName" value="TRANSPORT"/>
...

</codec>

Connecting Apama Applications to External Components 10.11.3 511

27 Codec IAF Plug-ins

</codecs>

The IAF can now route any upstream event that defines a TRANSPORT field to one of these two
transports. The value of the TRANSPORTfield, either MARKET_DATA or ORDER_MANAGEMENT, determines
the transport. Note: If the removeTransportField property is set true or not defined, then the
TRANSPORT field and __transportwill be removed (if present) from the upstream event before
sending it to transport.

2. The codec gets the transport name from the _transport field of the normalized event and sends
the event to specified transport. If the _transport field is not present or if the transport name
specified is empty, the codec then tries [3].

For example, in the above configuration, consider an upstream event that does not have a
TRANSPORT field or the value of the field is empty. If this event has a value in the __transport
field of either MARKET_DATA or ORDER_MANAGEMENT, then that value determines the transport.

3. The codec loops through all transports specified in the transportName property and sends the
event to the transport. If no transport is specified then the codec tries [4]. Note that the codec
ignores all transport names that are empty.

If an exception occurswhile sending the event to any transport, then the codec logs the exception
and continues sending events to the remaining transports. If the codec was able to send the
event to at least one transport, then it does not throws an exception; otherwise, it throws the
last captured exception.

For example, the following configuration specifies two transports:
<transports>

<transport name="MARKET_DATA" library="transport-lib">
<property name="Host" value="datahost.com" />
<property name="Port" value="444" />

</transport>
<transport name="ORDER_MANAGEMENT" library="transport-lib">

<property name="Host" value="orderhost.com" />
<property name="Port" value="1234" />

</transport>
</transports>
<codecs>

<codec name="XMLCodec"
className="com.apama.iaf.codec.xml.XMLCodec"
jarName="@ADAPTERS_JARDIR@\XMLCodec/jar">

<property name="transportName" value="ORDER_MANAGEMENT"/>
...

</codec>
</codecs>

In this example, the codec has not defined the transportFieldNameproperty. The IAFwill route
any upstream event that does not contain a __transport field or has empty value in that field
to the ORDER_MANAGEMENT transport.

4. If a default transport name is present, then the codec sends the event to that transport. The
default transport is the last-added transport. If a default transport is also not found then, it
throws an exception.

512 Connecting Apama Applications to External Components 10.11.3

27 Codec IAF Plug-ins

Message logging properties

logFlattenedXML— If true, the IAF log contains a list of the name/value pairs generated by the
XML codec when flattening XML received from the transport, at CRIT level. Each field is on a
different line, which makes it easy to see what fields are being generated and what the mapping's
transport field names should be set to. Turning this on in production impacts performance. The
default is false.

logAllMessages— If true, the IAF log contains the full contents of every message sent upstream
or downstream, before and after encoding, and before and after decoding, all at CRIT level. Turning
this on in production impacts performance. The default is false.

Downstream node order suffix properties

generateTwinOrderSuffix— If true, all field names for text, CDATA and element nodes are
appended with "", "[2]", "[3]", and so on. The number specifies the position of this node relative
to 'twins', that is, nodes of the same type and name. These order suffixes provide a partial order
for the XML nodes. Note that the first child node with a given name is defined to have no suffix
(rather than an explicit "[1]"), to improve readability. The default is false.

Use this property when you need to map fields without sensitivity to the precise order in which
differently named nodes appear in the XML. This is probably a more useful option than setting
the generateSiblingOrderSuffix property for most users of the XML codec.

generateSiblingOrderSuffix—If true, all field names for text, CDATA and element nodes (except
the root element) are appended with "#1", "#2", and so on. The number specifies the position of
this node relative to all its siblings (of any type, such as element or CDATA.). These order suffixes
provide a total order for the XML nodes. The default is true.

Use this propertywhen you need tomap fields using the precise order inwhich differently named
nodes appear in the XML, or for total control over node orderingwhen generating XMLupstream.

Examples of both suffixes are in “Description of event fields that represent normalized XML” on
page 516 and “Examples of conversions” on page 518.

You can set both node order properties to true. For sample output when both are set to true, see
“Examples of conversions” on page 518. The default values of these two properties may change in
a future release, so the recommendation is to explicitly specify both properties according to the
behavior required.

Additional downstream properties

XPath: XMLField -> ResultField—The value of this property specifies an XPath expression that
should be evaluated for the specified XMLField, with the result put into the ResultField in the
normalized event. Only simple data types (boolean/float/string) can be returned at present, so
XPath expressions that match multiple nodes only return the first matching node. See “XPath
examples” on page 521.

Connecting Apama Applications to External Components 10.11.3 513

27 Codec IAF Plug-ins

trimXMLText—If true, the XML codec removes any leading or trailingwhitespace characters from
XML text data in downstreammessages before adding the text to the normalized event. The default
is true.

Sequence field properties

sequenceField—The value of this property is a field that is treated as a sequence. This means that
all XML nodes that match this name are translated to a single entry in the normalized event, in
the form of an EPL sequence of type string. The element name should be a plain name, without
a node order suffix. In other words, the value of this property and the field in the outgoing event
should be in the form: elementA/elementB/@attrib. You can specify this property multiple times.

ensurePresent— This property specifies an attribute, text string or CDATA node of an element
that will be added to the output event as a blank string even if it is not present in the XML. This
is mostly useful for fields identified with the sequenceField property, as empty strings get added
to the sequence for optional attributes. You can specify this property multiple times.

separator: elementName—Whenever the specified element occurs in the XMLmessage, the value
of this property is prepended to any sequences in nodes below the specified element. See “Sequence
field example” on page 520.

Upstream properties

indentGeneratedXML—If true, the generated XML is indented tomake it easier to read. The default
is false.

omitGeneratedXMLDeclaration— If true, the <?xml ... ?> declaration at the start of the generated
XML is not included. The default is false.

Performance properties

skipNullFields—A boolean that indicates whether you want the XML codec to omit nodes with
null values from downstream, flattened, normalized events. Specify true to omit nodes with null
values. The default is false.

The skipNullFieldsproperty applies to the name/value pairs for XMLelements themselves. These
have no associated data, so generating normalized event fields for them is not necessary unless
they are required for ID rules. The skipNullFields property does not apply to a nodewhose value
is an empty string.

Setting skipNullFields to true has no effect on the ordering suffixes that the codec adds to nodes.
For example, consider an XML element that is deepwithin an XMLhierarchy such as the following:
<root>

<a>

<c>
I want this string

</c>

</root>

514 Connecting Apama Applications to External Components 10.11.3

27 Codec IAF Plug-ins

In the downstream direction, the XML codec creates a normalized event that contains a dictionary
of name/value pairs that includes an entry for each element. If you specify sibling suffixes and
Test as the XML field name, the dictionary contains the following:
{ "Test.root/":null ,

"Test.root/a#1/":null ,
"Test.root/a#1/b#1/":null ,
"Test.root/a#1/b#1/c#1/":null ,
"Test.root/a#1/b#1/c#1/text()#1:"I want this string" }

Unless you require one of the null value fields for an ID rule, you do not need the null value fields.
If you set skipNullFields to true, the XML codec drops the null value fields from the normalized
event. In this example, the result is a dictionary with one entry:
{ "Test.root/a#1/b#1/c#1/text()#1:"I want this string" }

As you can see, this is much more lightweight. Turning this feature on can sometimes improve
throughput by up to 1.5 times.

parseNode— Specify this property one or more times to identify only those nodes that you want
parsed, flattened, and added to the normalized event.

By default, the XML codec parses, flattens, and adds all nodes to the normalized event. If you
specify one or more parseNode property entries, the XML codec processes only the node or nodes
specified by a parseNode property.

The value of a parseNode property can be any node path. The codec ignores order suffixes (#n or
[n]) if you specify them in node paths. In other words, the codec parses all elements of the type
specified in the parseNode property.

For example, suppose the value of the XML field property is Test and you have the following
XML:
<root>

<a>ignore me
look at me
<c>look at me</c>
look at me again

<root>

You can specify the following parseNode properties:
<property name="parseNode" value="Test.root/b/text()" />
<property name="parseNode" value="Test.root/c[99999999999]/text()" />

The XML codec produces the following dictionary entries:
"Test.root/b#1/text()#1" = "look at me"
"Test.root/c#2/text()#1" = "look at me"
"Test.root/b#3/text()#1" = "look at me again"

As you can see, the XML codec ignores the [99999999999] suffix.

Typically, you would specify the following parseNode properties:

For eachmapping rule, specify a parseNode propertywhose value is the transport field for that
rule.

Connecting Apama Applications to External Components 10.11.3 515

27 Codec IAF Plug-ins

For each ID rule in the adapter configuration file, specify a parseNode property whose value
is the field name.

It is not necessary to specify parseNode properties for nodes identified by sequenceField or
separator:elementName properties.

Setting the parseNode property prevents some nodes from being parsed. Consequently, the order
of subsequent nodes might change, and therefore they would have different node order suffixes.
For this reason, you probably want to set the logFlattenedXML property to true to see in what
order suffixes are being generated before you add parseNode properties. Then add the parseNode
properties and update the node paths used in mapping and ID rules as needed.

Specifying parseNodeproperties instead of parsing the entire document can result in very substantial
throughput improvements. This is especially true for documents inwhich only a small proportion
of the XML is actually going to be mapped.

Description of event fields that represent normalized XML
Asmentioned before, a single XML field on the transport side is represented on the correlator side
as a series of name/value fields, all prefixed by the value you specified for the XMLField property.
This section describes how the XML codec names fields, based on the XML data.

Note, any field not specified as an XMLField for the XMLCodec will pass through the system as
normal. These fields are not dropped/ignored.

If there is any uncertainty about the correct transport field names to use in the IAFmapping rules,
try setting the logFlattenedXML codec property to true.

To preserve XML node ordering information, the codec adds ordering information to node names
by appending a suffix according to the suffix generation mode enabled — either "", #2, #3, and so
on or [1], [2], [3], and so on.

The #n sibling format provides a total ordering across all child nodes under a given parent,
specifying each node's position relative to all of its sibling nodes. This suffix mode is the default.
To turn it off, set the generateSiblingOrderSuffix codec property to false. Note that the root node
never has a sibling order suffix because only one root exists. Sample field names:
Field1.message/element#1/
Field1.message/other_element#2/
Field1.message/other_element#3/

The twin [n] format is insensitive to the order inwhich nodes appear as long as they have different
names, and it specifies a node's position relative to its twin nodes. (Twins are siblings with the
same node name.) This suffix mode is disabled by default (for backwards compatibility). To turn
it on, set the generateTwinOrderSuffix codec property to true. To improve readability the first
sibling nodewith a given name has no suffix. That is, the [1] suffix is implicit. Sample field names:
Field1.message/element/
Field1.message/element[2]/
Field1.message/other_element/
Field1.message/other_element[2]/
Field1.message/other_element[3]/
Field1.message/yet_another_element/

516 Connecting Apama Applications to External Components 10.11.3

27 Codec IAF Plug-ins

Field1.message/yet_another_element[2]/

Note that for a message to be correctly translated in the upstream direction (from the correlator),
there do not have to be enough suffixes in the event to form a total order, but any suffixes that are
provided will be used. In the absence of sibling order suffixes to determine ordering of different
node types, the XML codec generates the XML nodes in the following order:

1. Text data

2. CDATA

3. Elements

The XML codecmaps XML elements, attributes, CDATAand text data as described in the following
sections. In the following topics, assume that the value of the XMLField property is Test.

Elements

An XML element maps to a field with the following characteristics:

The name is separated and terminated with the slash (/) character.

The value is an empty string ("").

For example, an element B nested inside an element A is represented in the normalized event as
follows:
"Test.A/B#1/" = ""

When the XML codec generates XML for upstream events, it is not a requirement to have an
associated field for every element. The XML codec automatically creates ancestor XML elements
when they do not have associated fields. For example, consider the following field:
"Test.A/B#1/@att" = ""

If necessary, the codec creates the A and B element nodes.

Element attributes

XMLelement attributesmap to fieldswith names equal to the parent element's field name, followed
by @attwhere att is the name of the attribute, and the field's value is the attribute value. For
example, an attribute B of an element Awith the value Hello is represented as follows:
"Test.A/@B" = "Hello"

CDATA

XML CDATA in an element maps to a field with a name equal to the parent element's field name
followed by CDATA() and a value that contains the text data. For example, an element AwithCDATA
" Hello " followed by sub-element B followed by CDATA " World " is represented as follows:
"Test.A/CDATA()#1" = " Hello "
"Test.A/B#2/" = ""
"Test.A/CDATA()#3" = " World "

Connecting Apama Applications to External Components 10.11.3 517

27 Codec IAF Plug-ins

Text data

Text data in an XML element maps to a field with a name equal to the parent element's field name
followed by text(). The value of the field is the text data. Unless the trimXMLText is false (the
default is that it is true), the codec strips leading and trailing whitespace from text data. For
example, an element A that contains the text " Hello World " followed by sub-element B followed
by text " ! " is represented as follows:
"Test.A/text()#1" = "Hello World"
"Test.A/B#2/" = ""
"Test.A/text()#3" = "!"

In the event of errors during XML parsing, the parser

Logs the errors in the IAF log file

Tries to send to the semanticmapper a flattened, normalized event that contains the remaining
fields

Examples of conversions
Suppose that the value of the XMLField property is Test, and the value of the trimXMLText property
is true. Consider the following XML:
<?xml version="1.0" encoding="UTF-8"?>
<Message>

<ElementA>
Hello there
<ElementB/>
!
<ElementC/>
<![CDATA[Sample CDATA (with < and > comparison operators).]]>
<ElementB att1="X" att2="Y">
<![CDATA[More CDATA in the same element.]]>

</ElementB>
</ElementA>

</Message>

With sibling order suffixing, this XML maps to the following normalized event fields:
"Test.Message/" =
"Test.Message/ElementA#1/" =
"Test.Message/ElementA#1/text()#1" = "Hello there"
"Test.Message/ElementA#1/ElementB#2/" =
"Test.Message/ElementA#1/text()#3" = "!"
"Test.Message/ElementA#1/ElementC#4/" =
"Test.Message/ElementA#1/CDATA()#5" =

"Sample CDATA (with < and > comparison operators). "
"Test.Message/ElementA#1/ElementB#6/" =
"Test.Message/ElementA#1/ElementB#6/@att1" = "X"
"Test.Message/ElementA#1/ElementB#6/@att2" = "Y"
"Test.Message/ElementA#1/ElementB#6/CDATA()#1" =

"More CDATA in the same element."

With twin order suffixing, the same XML maps to the following normalized event fields:

518 Connecting Apama Applications to External Components 10.11.3

27 Codec IAF Plug-ins

"Test.Message/" =
"Test.Message/ElementA/" =
"Test.Message/ElementA/text()" = "Hello there"
"Test.Message/ElementA/ElementB/" =
"Test.Message/ElementA/text()[2]" = "!"
"Test.Message/ElementA/ElementC/" =
"Test.Message/ElementA/CDATA()" =

"Sample CDATA (with < and > comparison operators). "
"Test.Message/ElementA/ElementB[2]/" =
"Test.Message/ElementA/ElementB[2]/@att1" = "X"
"Test.Message/ElementA/ElementB[2]/@att2" = "Y"
"Test.Message/ElementA/ElementB[2]/CDATA()" =

"More CDATA in the same element."

To construct the XML above (assuming element ordering matters, but allowing for text()
concatenation), the following name/value pairs are all that is required:
"Test.Message/ElementA#1/text()#1" = "Hello there"
"Test.Message/ElementA#1/ElementB#2/" =
"Test.Message/ElementA#1/text()#3" = "!"
"Test.Message/ElementA#1/ElementC#4/" =
"Test.Message/ElementA#1/CDATA()#5" =

"Sample CDATA (with < and > comparison operators). "
"Test.Message/ElementA#1/ElementB#6/@att1" = "X"
"Test.Message/ElementA#1/ElementB#6/@att2" = "Y"
"Test.Message/ElementA#1/ElementB#6/CDATA()#1" =

"More CDATA in the same element."

With both sibling order suffixing and twin order suffixing set to true, the XML codec generates
two field/value pairs for each node. For example, the sameXMLused in the previous two examples
maps to the following:
"Test.Message/" =
"Test.Message/ElementA/" =
"Test.Message/ElementA#1/" =
"Test.Message/ElementA/text()" = "Hello there"
"Test.Message/ElementA#1/text()#1" = "Hello there"
"Test.Message/ElementA/ElementB/" =
"Test.Message/ElementA#1/ElementB#2/" =
"Test.Message/ElementA/text()[2]" = "!"
"Test.Message/ElementA#1/text()#3" = "!"
"Test.Message/ElementA/ElementC/" =
"Test.Message/ElementA#1/ElementC#4/" =
"Test.Message/ElementA/CDATA()" =

"Sample CDATA (with < and > comparison operators). "
"Test.Message/ElementA#1/CDATA()#5" =

"Sample CDATA (with < and > comparison operators). "
"Test.Message/ElementA/ElementB[2]/" =
"Test.Message/ElementA#1/ElementB#6/" =
"Test.Message/ElementA/ElementB[2]/@att1" = "X"
"Test.Message/ElementA#1/ElementB#6/@att1" = "X"
"Test.Message/ElementA/ElementB[2]/@att2" = "Y"
"Test.Message/ElementA#1/ElementB#6/@att2" = "Y"
"Test.Message/ElementA/ElementB[2]/CDATA()" = "More CDATA in the same element."
"Test.Message/ElementA#1/ElementB#6/CDATA()#1" =

"More CDATA in the same element."

Since the suffix properties are orthogonal, you can set both to true, and the XML codec generates
normalized fields with each kind of suffix. This allows you to use the same instance of the XML

Connecting Apama Applications to External Components 10.11.3 519

27 Codec IAF Plug-ins

codec for XML elements that need sibling suffixing and XML elements that need twin suffixing.
While this impacts memory usage according to the amount of XML data being normalized, you
can specify mapping rules to filter for the fields of interest.

Sequence field example
Consider the following XML fragment:
<root>

<prices instr="MSFT">
<info>1.04</info>
<info type="SELL">1.03</info>

</prices>
<prices instr="IBM">

<info type="BUY"></info>
<info type="SELL">1.06</info>

</prices>
</root>

Suppose that the following properties are set in the XML codec section of the IAF configuration
file:
<property name="XMLField" value="Test"/>
<property name="sequenceField" value="Test.root/prices/@instr"/>
<property name="sequenceField" value="Test.root/prices/info/@type"/>
<property name="sequenceField" value="Test.root/prices/info/text()"/>
<property name="ensurePresent" value="Test.root/prices/info/@type"/>
<property name="ensurePresent" value="Test.root/prices/info/text()"/>
<property name="separator:Test.root/prices" value="(prices)"/>

With these property values, the XML fragment maps to the following normalized event fields:
"Test.root/" =
"Test.root/prices#1/" =
"Test.root/prices#1/info#1/" =
"Test.root/prices#1/info#2/" =
"Test.root/prices#2/" =
"Test.root/prices#2/info#1/" =
"Test.root/prices#2/info#2/" =
"Test.root/prices/@instr" = ["(prices)", "MSFT", "(prices)", "IBM"]
"Test.root/prices/info/@type" =

["(prices)", "", "SELL", "(prices)", "BUY", "SELL"]
"Test.root/prices/info/text()"=

["(prices)", "1.04", "1.03", "(prices)", "", "1.06"]

If you define the following mapping rules in the IAF configuration file, you can map these
normalized event fields to and from string fields in a sequence field of an Apama event.
<mapping-rules>

<map transport="Test.root/prices/@instr"
apama="instruments" type="reference"
referencetype="sequence <string>" default="[]"/>

<map transport="Test.root/prices/info/@type"
apama="types" type="reference"
referencetype="sequence <string>" default="[]"/>

<map transport="Test.root/prices/info/text()"
apama="prices" type="reference"

520 Connecting Apama Applications to External Components 10.11.3

27 Codec IAF Plug-ins

referencetype="sequence <string>" default="[]"/>
</mapping-rules>

XPath examples
Consider the following XML:
<root>

text1
A text 1
<a>A text 2
<b att="300.0">

This is an interesting text string

</root>

Suppose that the following properties are set in the XML codec section of the IAF configuration
file:
<property name="XMLField" value="Test"/>
<property name="XPath:Test->MyXPathResult.last-a" value="*/a[last()]"/>
<property name="XPath:Test->MyXPathResult.first-att" value="//@att"/>
<property name="XPath:Test->MyXPathResult.first-a-text"

value="/root/a[1]/text()"/>
<property name="XPath:Test->MyXPathResult.att>200" value="//@att>200"/>
<property name="XPath:Test->MyXPathResult.att-count" value="count(//@att)"/>
<property name="XPath:Test->MyXPathResult.text-contains"

value="contains(/cdata-root/text()[last()], "interesting")"/>

With these property values, the XML fragment maps to the following normalized event fields:
"MyXPathResult.last-a" = "A text 2"
"MyXPathResult.first-att" = "100.1"
"MyXPathResult.first-a-text" = "A text 1"
"MyXPathResult.att>200" = "true"
"MyXPathResult.att-count" = "3"
"MyXPathResult.text-contains" = "true"

The CSV codec IAF plug-in
The CSV codec plug-in (JCSVCodec) translates between comma separated value (CSV) data and a
sequence of string values. This codec (or the Fixed Width codec plug-in; see “The Fixed Width
codec IAF plug-in” on page 524) can be used with the standard Apama File adapter to read data
from files and to write data to files.

CSV format is a simple way to store data on a value by value basis. Consider an example CSV file
that contains stock tick data. The lines in the file are ordered by Symbol, Exchange, Current Price,
Day High, and Day Low, as follows:
TSCO, L, 395.50, 401.5, 386.25
MKS, L, 225.25, 240.75, 210.25

In this example, each field is separated from the next by a comma. You can use other characters
as separators as long as you identify the separator character for the CSV codec.

Connecting Apama Applications to External Components 10.11.3 521

27 Codec IAF Plug-ins

To specify a separator character other than a comma, do one of the following:

Send a configuration event from the transport that is communicatingwith theCSV codec using
the method described in “Multiple configurations and the CSV codec” on page 522.

Set the separator property in the IAF configuration file that you use to start the File adapter.
For example:
<property name="separator" value="," />

If you set the separator property, the codec uses the separator you specify by default. If you
do not specify the separator property, and the codec does not receive any configuration events
before receiving messages to encode or decode, the codec refuses to process messages. The
codec throws an exception back to the module that called it, which is either the transport or
the semantic mapper depending on whether the data is flowing downstream or upstream.

Optionally, you can also set the excelCompatible property in the IAF configuration file. By
default, this is set to false. If set to true, Excel compatibility mode is enabled, and double
quotes are then used to match the behavior of Excel. The separator property is still required
when using the excelCompatible property. For example:
<property name="separator" value="," />
<property name="excelCompatible" value="true" />

For an example configuration file, see adapters\config\JCSVCodec-example.xml.dist in theApama
installation directory. The JCSVCodec-example.xml.dist file itself should not be modified, but you
can copy relevant sections of the XML code, modify the code as required for the purposes of your
data, and then add the modified content to the adapter configuration file in which the codec is to
be used.

Multiple configurations and the CSV codec
The CSV codec supports multiple configurations for interpreting separated data from different
sources. A transport that is using the CSV codec can use the
com.apama.iaf.plugin.ConfigurableCodec interface to set updifferent configurations for interpreting
data from multiple sources that use different formats.

The transport can set a configuration by calling the following method on the codec:
public void addConfiguration(int sessionId,

NormalisedEvent configuration)
throws java.io.IOException

The sessionId represents the ID value for this configuration.

The normalized event should contain the following key/value pairs stored as strings that will be
parsed in the codec:

ValueKey

The character that is to be used as the separator character, for
example, a comma (,) or semicolon (;).

separator

522 Connecting Apama Applications to External Components 10.11.3

27 Codec IAF Plug-ins

ValueKey

Optional. If set to true, Excel compatibility mode is enabled.
Double quotes are then used to match the behavior of Excel.
Default: false.

excelCompatible

The transport can remove a configuration by calling the following method:
void removeConfiguration(int sessionId) throws java.io.IOException

The sessionId represents the ID value initially used to add the configuration with the
addConfiguration()method.

Decoding CSV data from the sink to send to the correlator
To decode an event into a sequence of fields, the transport can then call:
public void sendTransportEvent(Object event, TimestampSet timestamps)

throws CodecException, SemanticMapperException

The event object is assumed to be a NormalisedEvent instance. It must contain a key of data, which
has a value of string type that contains the data to decode. That is, the string contains the line
containing the separated data. The codec then decodes the data, and stores the value from each
field in a string sequence. This value from each field replaces the value for the data key.

If the event object also contains a sessionId key with an integer value associated with it, the value
of the key identifies the configuration the codec uses to interpret the data. If the event does not
contain a sessionId, the codec uses the default configuration as specified in the adapter
configuration file.

Encoding CSV data from the correlator for the sink
Encoding CSV data works in the exact opposite way as decoding. The semantic mapper calls:
public void sendNormalisedEvent(NormalisedEvent event,

TimestampSet timestamps)
throws CodecException, TransportException

The sendNormalisedEvent()method retrieves the data associated with the data key. The retrieved
data is a sequence of strings, each of which contains the value of a field. The method then encodes
the sequence into a single line to send to the transport so the transport can write the data to the
sink. The CSV codec stores the result of the encoding in the data field. If the event contains a
sessionId value, this is the configuration that the codec uses to encode the data. If the event does
not contain a sessionId, the codec uses the default adapter configuration as specified in the
adapter's configuration file initially used to start the adapter.

For a given event mapping in the IAF configuration file, it is not possible to dynamically specify
the event decoder property, which identifies the codec that sends this event to the transport.
Consequently, an adapter that is using several different codecs is unable to receive the same type
of event from each codec. If it is necessary for your adapter to receive the same type of event from
multiple codecs, set the event decoder property to the Null codec. This lets the transport receive

Connecting Apama Applications to External Components 10.11.3 523

27 Codec IAF Plug-ins

the event and subsequently reroute the event back to the CSV codec by calling the following
method:
sendNormalisedEvent(NormalisedEvent event, TimestampSet timestamps)

The CSV codec then returns the encoded data to the transport.

The Fixed Width codec IAF plug-in
The Fixed Width codec plug-in (JFixedWidthCodec) translates between fixed width data and a
sequence of string values. This codec (or the CSV codec plug-in) can be used with the standard
Apama File adapter to read data from files and write data to files. For more information on the
CSV codec, see “The CSV codec IAF plug-in” on page 521.

Fixed width data is a method of storing data fields in a packet or a line that is a fixed number of
characters in size. Data stored in a fixed width format can be expressed by the following three
parameters:

The field widths used (that is, the number of characters used for storing each field)

The padding character used if the data for a given field can be stored in less than the number
of characters allocated for it

Whether or not the data is left or right aligned within the field.

For example, consider the following, which describes a tick with ordered properties:

6 characterssymbol

4 charactersexchange

9 characterscurrent price

9 charactersday high

9 charactersday low

If the pad character is -, an example of a left-aligned line is as follows:
TSCO--L---392.25---400.25---382.25---

The following is an example of a right-aligned line:
--TSCO---L---392.25---400.25---382.25

To specify fixed width data properties, do one of the following:

Send a configuration event from the transport that is communicating with the Fixed Width
codec using the method described in “Multiple configurations and the FixedWidth codec” on
page 525.

Set the fixed width properties in the IAF configuration file you use to start the adapter. For
example, to obtain the left-aligned fixed width data above:

524 Connecting Apama Applications to External Components 10.11.3

27 Codec IAF Plug-ins

<property name="fieldLengths" value="[6,4,9,9,9]"/>
<property name="padCharacter" value="-"/>
<property name="isLeftAligned" value="true"/>

If you set all these properties, the codec uses them by default when decoding or encoding events.

If you do not set any of these properties, the codec expects to receive configuration events (as
described in “Multiple configurations and the FixedWidth codec” on page 525), prior to receiving
messages to encode or decode. Otherwise, the codec refuses to process these messages. The codec
throws an exception back to themodule that called it, which is either the transport or the semantic
mapper depending on whether the data is flowing downstream or upstream.

If you require a default configuration, be sure to set all of these properties in the configuration
file. If you set some of the properties, but not all of them, the codec cannot start.

For an example configuration file, see adapters\config\JFixedWidthCodec-example.xml.dist in
the Apama installation directory. The JFixedWidthCodec-example.xml.dist file itself should not
be modified, but you can copy relevant sections of the XML code, modify the code as required for
the purposes of your data, and then add the modified content to the adapter configuration file in
which the codec is to be used.

Multiple configurations and the Fixed Width codec
The Fixed Width codec supports multiple configurations for interpreting fixed width data from
different sources. A transport that is using the Fixed Width codec can use the
com.apama.iaf.plugin.ConfigurableCodec interface to set the configuration that you want the
adapter to use.

The transport can set a configuration by calling the following method on the codec:
public void addConfiguration(int sessionId,

NormalisedEvent configuration)
throws java.io.IOException

The sessionId represents the ID value for this configuration.

The normalized event should contain key/value pairs that are stored as strings the Fixed Width
codec can parse.

ValueKey

A string sequence that contains the number of characters each field
value is stored in. For example, "[5,6,5,9"] where the first value is

fieldLengths

stored in the first 5 characters, the second value is stored in the
next 6 characters, and so on.

true or false, depending on whether data is left or right aligned
in a field.

isLeftAligned

"_" where '_' is the pad character used when the data requires
padding to fill the field.

padCharacter

Connecting Apama Applications to External Components 10.11.3 525

27 Codec IAF Plug-ins

The transport can remove a configuration by calling the following method:
void removeConfiguration(int sessionId) throws java.io.IOException

The sessionId represents the ID value initially used to add the configuration using the
addConfiguration()method.

Decoding fixed width data from the sink to send to the
correlator
To decode an event into a sequence of fields, the transport calls the sendTransportEvent()method
as follows:
public void sendTransportEvent(Object event, TimestampSet timestamps)

throws CodecException, SemanticMapperException

The event object is assumed to be a NormalisedEvent. It must contain the key data, which has a
value of string type containing the data to decode. That is, the line that contains the fixed width
data. The FixedWidth codec then decodes the data and stores the value from each field in a string
sequence. This value from each field replaces the value for the data key.

If the event also contains a sessionId key with an integer value associated with it, this is the
configuration that the codec uses to interpret the data. If the event does not contain a sessionId
the codec uses the default configuration as specified in the configuration file.

Encoding fixed width data from the correlator for the sink
Encoding fixed width data works in the exact opposite way to decoding. The semantic mapper
calls:
public void sendNormalisedEvent(NormalisedEvent event,

TimestampSet timestamps)
throws CodecException, TransportException

Thismethod retrieves the data associatedwith the data key. The data is in a string sequencewhere
each member contains the value of a field. The method encodes the sequence members into a
single line to send to the transport so the transport can write the data to the sink. Finally, the
method stores the result of the encoding in the data field again.

If the event contains a sessionId value, this is the configuration that the codec uses to encode the
data. If the event does not contain a sessionId, the codec uses the default File adapter configuration
as specified in the File adapter configuration file initially used to start the file adapter.

For a given event mapping in the IAF configuration file, it is not possible to dynamically specify
the event decoder property, which identifies the codec that sends the event to the transport.
Consequently, an adapter that is using several different codecs is unable to receive the same type
of event from each codec. If it is necessary for your adapter to receive the same type of event from
multiple codecs, set the event decoder property to the Null codec. This lets the transport receive
the event and subsequently reroute the event back to the FixedWidth codec by calling the following
method:

526 Connecting Apama Applications to External Components 10.11.3

27 Codec IAF Plug-ins

sendNormalisedEvent(NormalisedEvent event, TimestampSet timestamps)

The Fixed Width codec then returns the encoded data to the transport.

Connecting Apama Applications to External Components 10.11.3 527

27 Codec IAF Plug-ins

528 Connecting Apama Applications to External Components 10.11.3

27 Codec IAF Plug-ins

VI Developing Custom Clients

28 The Client Software Development Kits ... 531

29 Engine Management API ... 537

30 Engine Client API ... 541

31 Event Service API .. 545

32 Scenario Service API ... 547

Connecting Apama Applications to External Components 10.11.3 529

530 Connecting Apama Applications to External Components 10.11.3

VI Developing Custom Clients

28 The Client Software Development Kits

■ The client libraries .. 532

■ Working with event objects ... 534

■ Logging ... 534

■ Exception handling and thread safety .. 534

Connecting Apama Applications to External Components 10.11.3 531

Apama applications that are to run within the correlator can either be built natively in the Apama
Event Processing Language (EPL) or in JMon.

Although Apama includes a suite of tools to allow EPL code to be submitted to the correlator
interactively, aswell as submit events from text files, it is often necessary to go further and integrate
the correlator directlywith other software. Often this is required in order to drive customgraphical
user interfaces, or to deliver messages to and receive messages from the correlator (like market
data and order management).

In environments that require the correlator to be integrated with middleware infrastructure and
data buses, it is usually preferable to do this with Apama's Integration Adapter Framework (IAF).
For information ondeveloping adapterswith the IAF, see “The IntegrationAdapter Framework” on
page 319.

If your environment needs to interface programmatically with the correlator, Apama provides a
suite of Client Software Development Kits. These allow you to write custom software applications
that interface existing enterprise applications, event sources and event clients to the correlator.
These custom applications can be written in C++, Java or .NET. The following interface layers are
available:

Engine Management API. Low-level base API on which other APIs are built. It provides
facilities to inject/delete EPL, send/receive events, inspect and monitor engines. See “Engine
Management API” on page 537 for detailed information.

Note:
In most cases, we recommend using one of the higher-level APIs listed below in preference
to the Engine Management API.

EngineClientAPI.More powerful API built on top of the EngineManagementAPI. It provides
all the functionality provided by the Engine Management API along with functionality such
as auto-reconnection or listeners for property changes. See “Engine Client API” on page 541
for detailed information.

Event Service API.More powerful API focused around sending and receiving events to and
from channels. It provides synchronous or asynchronous pseudo-RPCmechanisms. See “Event
Service API” on page 545 for detailed information.

Scenario Service API. Provides an external interface to DataViews and queries. See “Scenario
Service API” on page 547 for detailed information.

The Engine Management API is available for C++, Java and .NET. The other APIs are available
only for Java and .NET.

The client libraries
The client libraries can be found in the following locations of your Apama installation:

For C++, in the lib directory: libapclient.so (-lapclient) on UNIX, or apclient.lib on
Windows.

For Java, in the lib directory: ap-client.jar.

532 Connecting Apama Applications to External Components 10.11.3

28 The Client Software Development Kits

For .NET, in the bin directory: apclientdotnet.dll (and its dependency apclient.dll).

Using the C++ client library

To program against the C++ SDK, you must use the definitions from the engine_client_cpp.hpp
header file, which is located in the include directory of your Apama installation.

C++ compilers vary extensively in their support for the ISOC++ standard and in how they support
linking. For this reason, Apama supports only specific C++ compilers and development
environments. For a list of the supported C++ compilers, see Software AG's Knowledge Center in
Empower at https://empower.softwareag.com/.

To configure the build for an Apama C++ client:

On UNIX, copying and customizing an Apama makefile from a sample application is the
easiest method.

On Windows, you might find it easiest to copy an Apama sample project. If you prefer to use
a project you already have, be sure to add $(APAMA_HOME)\include as an include directory. To
do this in Visual Studio, select your project and then selectProject Properties > C++ > General
> Additional Include Directories.

Also, link against apclient.lib. To do this in Visual Studio, select your project and then select
Project Properties > Linker > Input > Additional Dependencies and add apclient.lib.

Finally, select Project Properties > Linker > General > Additional Library Directories and
add $(APAMA_HOME)\lib.

Using the Java client library

Add the ap-client.jar library to your classpath when compiling and running.

Using the .NET client library

To make use of the .NET wrapper, add the apclientdonet.dll library as a reference of your
assembly.

To run an application using the wrapper:

1. Copy the following libraries from the bindirectory of yourApama installation into the directory
that contains your compiled .NET assembly:

apclient.dll

apclientdonet.dll

log4net.dll

2. Ensure that the bin directory of your Apama installation is in the PATH environment variable.

Connecting Apama Applications to External Components 10.11.3 533

28 The Client Software Development Kits

https://empower.softwareag.com/

Working with event objects
To create event objects to usewith the Client Software Development Kits (and also to delete them),
use the following:

For C++, use com::apama::event::createEvent and related functions.

For Java, use com.apama.event.parser.EventType and its associated classes.

For .NET, use Apama.Event.Parser.EventType and its associated classes.

Logging

Logging in C++

The C++ API can output extensive information. This information can be useful in diagnosing
connectivity issues or problems that youmay encounter whenwriting the software that interfaces
with the engine. As an author of a C++ client, you need not botherwith the standard logging unless
you want to modify its operating parameters.

By default, the log level is set to WARN, where only significant warnings and errors are displayed
in the log. The whole list of log levels is OFF (that is, no logging at all), CRIT, FATAL, ERROR, WARN,
INFO, DEBUG and TRACE. These levels are listed in order of decreasing importance, and conversely
in the order of least likely occurrence. A very large volume of information is output at DEBUG level.

To change the logging, the C++ API provides various functions which can be found in the header
file (.hpp). These functions generally have the term “log” in their names.

Logging in Java and .NET

The logging facilities in Java and .NET are significantly more powerful than in C++. The Java API
makes use of Log4j, a publicly available logging library for Java. For your convenience, Apama
provides a wrapper class that abstracts the logging capabilities provided, and it is this interface
that is used by the Client API for Java. See the Javadoc of the com.apama.util.Logger class for
more information about the logging facility.

The .NET API makes use of log4net, a publicly available logging library for .NET. For your
convenience, Apama provides a wrapper class that abstracts the logging capabilities provided,
and it is this interface that is used by the Client API for .NET. See the documentation of the
Apama.Util.Logger class for more information about the logging facility.

Exception handling and thread safety

Exception handling

Several of the methods and functions of the API can throw exceptions if they fail or encounter
exceptional circumstances. All of these are of the following type:

534 Connecting Apama Applications to External Components 10.11.3

28 The Client Software Development Kits

com::apama::EngineException in C++

com.apama.EngineException in Java

Apama.EngineException in .NET

An exception contains a text message indicating the nature of the problem encountered.

Thread safety

All client APIs are thread-safe, unless otherwise specified, in the sense that you can call API
methods from any thread. Several background threads are created during the usage of a client
API. Events received from a correlatorwill be handled in one of background threads, so you cannot
assume that events will be delivered to you on any particular thread.

Connecting Apama Applications to External Components 10.11.3 535

28 The Client Software Development Kits

536 Connecting Apama Applications to External Components 10.11.3

28 The Client Software Development Kits

29 Engine Management API

The Apama Engine Management API is available in the following languages: C++, Java and .NET.

The Engine Management API provides capabilities to interact with an Apama engine, typically a
correlator. It provides the ability to send and receive events, inject and delete EPL entities (such
as EPL, JMon and CDP files), connect Apama engines together, inspect what was injected into the
correlator and monitor the status of the correlator.

Note:
We recommend that where possible Java and .NET developers should use the Engine Client
API instead of the more basic low-level Engine Management API. Also consider using the
higher-level Event Service API for clients that primarily involve sending and receiving events.

For a full reference of the EngineManagementAPI in the different languages, refer to the following
in your Apama installation directory:

For C++, refer to the header file engine_client_cpp.hpp in the include directory.

For Java, refer to the API Reference for Java (Javadoc).

For .NET, refer to the API Reference for .NET.

For examples of using the Engine Management API, see the following directories of your Apama
installation:

samples\engine_client\cpp

samples\engine_client\java\EngineManagement

samples\engine_client\dotnet\EngineManagement

Differences between the different API languages

The APIs for C++, Java and .NET are packaged through a set of classes that model a set of entities.

The C++ API differs slightly from the Java and .NET APIs in the way it supports construction and
destruction of objects. While the C++ API provides a set of static library methods that must be
called to create and delete objects of themain classes, the Java and .NETAPIs either provide factory
classes or else have no restrictions on directly constructing objects. The C++ API generally has to
manually delete the objects (structure instances) created using themethods provided. Themethods

Connecting Apama Applications to External Components 10.11.3 537

to create objects (structure instances) in the C++ API generally have the term “create” in their
names, and methods to delete objects (structure instances) have the term “delete” in their names.

Note:
In C++ applications, any strings passed by the application to the correlator need to be encoded
as UTF-8 (or as pure 7-bit ASCII, which is a subset of UTF-8). If the application environment is
something other than UTF-8, you have to use the methods provided by the C++ Engine
ManagementAPI for the conversion to/fromUTF-8 encoding. Themethods forUTF-8 conversion
generally have the term “UTF8” in their names.

The APIs for Java and .NET are almost identical except for the naming/capitalization of classes,
methods and packages.

Using the Engine Management API

Before using the API for C++ or .NET Engine Management, the API must be initialized exactly
once:

The C++ API can be initialized by calling the com::apama::engine::engineInit() function.

The .NET API can be initialized by calling the Apama.Engine.Api.EngineInit()method.

The Java API does not need to be initialized before using it.

The key object of the API is the EngineManagement object. The EngineManagement object connects to
the engine and allows clients to interact with it. In each language, the API provides a mechanism
to create an EngineManagement object:

In the C++ API, the EngineManagement object is an instance of the
com::apama::engine::EngineManagement class.

In the Java API, it is an instance of the com.apama.engine.EngineManagement interface.

In the .NET API, it is an instance of the Apama.Engine.EngineManagement interface.

The following method needs to be called to get an EngineManagement object:

For the C++ client, you have to call com::apama::engine::connectToEngine().

For the Java client, you have to call the static connectToEngine()method of the
com.apama.engine.EngineManagementFactory class.

For the .NET client, you have to call the static ConnectToEngine()method of the
Apama.Engine.Api class.

Once the EngineManagement object is created, it can be used to send/receive events, inject/delete
EPL entities, monitor and inspect engines, and connect two engines together.

If an EngineManagement object is no longer needed, it should be disconnected. The methods for
disconnecting generally have the term “disconnect” in their names.

Once done with the Engine Management API, it should be shut down if using the API for C++ or
.NET. The API for Java does not need to be shut down. The methods for shutting down the API
generally have the term “shutdown”, “close” or “dispose” in their names.

538 Connecting Apama Applications to External Components 10.11.3

29 Engine Management API

Sending events

Clients wishing to use the EngineManagement object to send events into the engine should use
various methods provided by it. The methods to send events generally have the term “send” in
their names. The “send” methods/functions require an event object as input.

Receiving events

Clients wishing to use the EngineManagement object to receive events should do so by adding one
ormore consumerswith channels fromwhich it wants to receive events. A consumerwithmultiple
subscriptions to the same channel will receive only a single copy of each event emitted to the
subscribed channel. The methods to add consumers generally have the term “consumer” in their
names.

In the C++ API, consumers are instances of the com::apama::event::EventConsumer class.

In the Java API, consumers are instances of the com.apama.event.EventConsumer interface.

In the .NET API, consumers are instances of the Apama.Event.EventConsumer class.

Themethods/functions to add consumers return an EventSupplier object which acts as the unique
interface between the correlator and that particular EventConsumer instance. The supplier should
be disconnected and disposed before the consumer is disconnect and disposed.

If a consumer needs to be notified when it is disconnected, DisconnectableEventConsumer should
be used when adding a consumer. The disconnect()method of the consumer will be called when
the connection to the engine is lost.

Note:
If you need more advanced send/receive functionality, you should also consider using the
higher-level EventService API (for Java and .NET) rather than the Engine Management API.

Injecting and deleting EPL

The EngineManagement object provides the capability to gather information from a remote correlator
about the set of monitors and event types that it is currently working with. This information can
be retrieved by calling inspectEngine() or a similar method on the EngineManagement object.

The inspectEnginemethod/function returns the EngineInfo object which encapsulates various
information about the engine such as the number of monitors, the number of event types, or the
number of contexts.

Status monitoring

The EngineManagement object provides the capability to get status information from the engine.
The status information can be retrieved by calling getStatus() or a similar method on the
EngineManagement object.

The getStatus() function returns an EngineStatus object which encapsulates various status
information about the engine such as uptime, the number of consumers, or input and output queue

Connecting Apama Applications to External Components 10.11.3 539

29 Engine Management API

sizes. For more information, see "List of correlator status statistics" in Deploying and Managing
Apama Applications.

Connecting correlators

The EngineManagement object provides the capability to connect one engine to another engine so
that it receives events emitted on the specified channels. Themethods to attach/detach two engines
generally have the term “attach” or “detach” in their names.

540 Connecting Apama Applications to External Components 10.11.3

29 Engine Management API

30 Engine Client API

The Apama Engine Client API is available in the following languages: Java and .NET.

The EngineClientAPI provides capabilities to interactwith anApama engine, typically a correlator.
It provides the ability to send and receive events, inject and delete EPL entities (such as EPL, JMon
andCDP files), connect Apama engines together, inspect what was injected into the correlator and
monitor the status of the correlator.

Note:
We recommend that where possible Java and .NET developers should use the Engine Client
API instead of the more basic low-level Engine Management API. Also consider using the
higher-level Event Service API for clients that primarily involve sending and receiving events.

For a full reference of the Engine Client API in the different languages, refer to the following:

API Reference for Java (Javadoc)

API Reference for .NET

For examples of using the Engine Client API, see the following directories of your Apama
installation:

samples\engine_client\java\EngineClient

samples\engine_client\dotnet\EngineClient

Using the Engine Client API

An EngineClient instance can be acquired by calling the createEngineClientmethod of the
EngineClientFactory class. The factory class is the following:

For Java, it is com.apama.engine.beans.EngineClientFactory.

For .NET, it is Apama.Engine.Client.EngineClientFactory.

The host and port of the target engine can be provided when creating the EngineClient instance
or later using the setHost(string) and setPort(int)methods.

Once the EngineClient instance has been configured as needed, a connection can be established
either synchronously using connectNow() (which throws an exception on error) or asynchronously
using connectInBackground() (which automatically retries until a connection is established; see
setConnectionPollingInterval(int) and setReconnectPeriod(long)). Changes to the values of

Connecting Apama Applications to External Components 10.11.3 541

the host or port will cause the bean to attempt to re-connect to the correlator running on the new
host/port.

Once the client connected successfully, a background thread will keep pinging it to ensure that
the connection is still up (see the setConnectionPollingInterval(int)method for Java and the
ConnectionPollingInterval property for .NET). If the entire client connection is lost, the following
properties will change to false to notify the user of the EngineCient:

PROPERTY_BEAN_CONNECTED and PROPERTY_ALL_CONSUMERS_CONNECTED for Java.

PropertyConnected and PropertyAllConsumersConnected for .NET.

The client will continue to try to reconnect in the background, with the retry interval that can be
configured using the setConnectionPollingInterval(int)method for Java or the
ConnectionPollingInterval property for .NET.

If the client itself remains connected but its named consumers are disconnected by the engine (due
to being slow if slow consumer disconnection is enabled), then it is the caller's responsibility to
force the reconnection of the consumers by disconnecting and reconnecting the client (although
applications with this requirement may be better off using the EventService API instead which
does this automatically; see “Event Service API” on page 545 for more information). To prevent
reconnecting slow consumers too soon after a disconnection, a minimum time between the
reconnection attempts can be configured using the setReconnectPeriod(long)method for Java or
the SetReconnectPeriod property for .NET.

The EngineClient object can be disconnected using disconnect()whenever required.

If the EngineClient object is no longer needed, a final cleanup should be performed by calling
close() for Java or Dispose() for .NET, which will disconnect it and also ensure that any
background threads started by the client have been terminated.

Sending events

Clients wishing to use the EngineClient object to send events into the engine should use various
methods provided by it. The methods to send events generally have the term “send” in their
names.

Receiving events

Clients wishing to use the EngineClient object to receive events should do so by adding one or
more named consumers, each of which has its own independent event listener and list of channels
to receive from. The named consumermethods generally have the term “consumer” in their names,
and are defined by com.apama.engine.beans.interfaces.ReceiveConsumerOperationsInterface
for Java and Apama.Engine.Client.IMessagingClient for .NET.

Note:
If you needmore advanced send/receive functionality, you should also consider using the higher
level EventService API (for Java and .NET) rather than the Engine Client API.

542 Connecting Apama Applications to External Components 10.11.3

30 Engine Client API

Injecting and deleting EPL

The Engine Client API provides the capability to inject and delete EPL entities. The methods to
inject normally have the term “inject” in their names. The methods to delete normally have the
term “delete” or “kill” in their names.

A normal deletion works only if the EPL element being deleted is not referenced by any other
element. For example, you cannot delete an event type that is used by any monitors.

The Engine Client API also provides the capability to force the deletion, which deletes the specified
element as well as all other elements that refer to it. For example, if monitor A has listeners for B
events and C events, and you forcibly delete the C events, the operation also deletes monitor A
and thus also the listener for B events.

Inspecting the correlator

The Engine Client API provides the capability to gather information from a remote correlator
about the set of monitors and event types that it is currently working with. This information can
be retrieved by calling the getRemoteEngineInfo()method on the EngineClient object.

The Engine Client API also provides the capability to use a background thread to periodically
collect engine information and make available the last known collected information. The polling
interval can be configured using the setInspectPollingInterval(integer)method for Java or the
InspectPollingInterval property for .NET. The last collected information can be retrieved with
the getEngineInfo()method.

Status monitoring

The Engine Client API provides the capability to get status information from the remote correlator.
The status information can be retrieved by calling the getRemoteStatus()method on the
EngineClient object.

The Engine Client API also provides the capability to use a background thread to periodically
collect status information andmake available the last known collected status. The polling interval
can be configured using the setStatusPollingInterval(integer)method for Java or the
StatusPollingInterval property for .NET. The last collected status can be retrieved with the
getStatus()method for Java or the Status property for .NET.

The Engine Client API also provides the capability to get user-defined status information from a
client EPL application. This information can be retrieved using actions such as getUserString()
on the EngineStatus object. For more information on these actions, see the corresponding section
in "Using the Management interface" in Developing Apama Applications.

Connecting two engines

The Engine Client API provides the capability to connect one engine to another engine so that it
receives events emitted on the specified channels. The methods to connect two engines generally
have “attachAsConsumerOfEngine” in their names.

Connecting Apama Applications to External Components 10.11.3 543

30 Engine Client API

Thread-safety

The Engine Client API provides locking so that concurrent use by multiple threads is safe.

To avoid deadlock problems, clients should be careful not to call methods on the object fromwithin
synchronous event listeners. Instead, if this is required, the consumer should be added as
asynchronous (see the addConsumermethod), or the EventService API should be used instead.
However, it is safe to call EngineClientmethods (except close or Dispose) from within property
change listeners, which are asynchronous by default.

544 Connecting Apama Applications to External Components 10.11.3

30 Engine Client API

31 Event Service API

The Apama Event Service API is layered on top of the Engine Client API which is described in
“Engine Client API” on page 541.

The Event Service API allows client applications to focus on events and channels.

For a full reference of the Event Service API in the different languages, refer to the following:

API Reference for Java (Javadoc)

API Reference for .NET

For examples of using the Event Service API, see the following directories of your Apama
installation:

samples\engine_client\java\EventService

samples\engine_client\dotnet\EventService

Using the Event Service API

An EventService instance can be created by calling the createEventService()method of the
EventServiceFactory class. The factory class is the following:

For Java, it is com.apama.services.event.EventServiceFactory.

For .NET, it is Apama.Services.Event.EventServiceFactory.

The host and port of the target engine is provided when creating the EventService instance.

Once the EventService instance has been created, it automatically takes care of connecting to the
correlator in the background and of reconnecting when disconnected.

If the EventService is no longer needed, a cleanup should be performed by calling close() for
Java or Dispose() for .NET, which will disconnect it and also ensure that any started background
threads have been terminated.

Sending events

Clients wishing to use the EventService to send events into the correlator should use the send
methods provided by it. The methods to send events generally have the term “send” in their
names.

Connecting Apama Applications to External Components 10.11.3 545

Receiving events

To use the Event Service API, clients first need to create one or more EventServiceChannel objects
to receive events from one or more channels. The methods to add/remove channels have the term
“channel” in their names. Once an EventServiceChannel object is created, it can be used to receive
events from the correlator. To receive events, clients need to add one or more event listeners on
an EventServiceChannel object to receive either events of certain event types or all events from
the channel.

The Event Service API also provides an advanced mechanism to emulate request-response
functionality. The EventServiceChannel object provides both synchronous and asynchronous
mechanisms for request-response. With the synchronous mechanism, the client sends an event to
the correlator and waits for the matching response event. With the asynchronous mechanism, the
client sends an event to the correlator, and callback is invoked when a matching response event
is received. The methods to emulate request-response functionality generally have
“RequestResponse” in their names.

546 Connecting Apama Applications to External Components 10.11.3

31 Event Service API

32 Scenario Service API

Scenarios are a simple abstraction for interacting with an Apama application using
create/read/update/delete (CRUD) operations.

Each scenario is defined by a unique identifier and display name, and a list of named input and/or
output parameters and their types. Multiple instances of each scenario can be created, each with
their own input parameter values. Scenario instances can subsequently be edited or deleted.
Instances can produce a series of updates as their output parameter values change, and also have
an “owner” and a “state” which can be RUNNING, ENDED or FAILED.

Apama queries use the scenario abstraction to support creating, editing and deleting instances of
each query, but do not generate any outputs. Scenarios that provide a read-only view of data -
generating outputs but not allowing external clients to create, edit or delete instances - are called
DataViews. DataViews can be used to expose data from many parts of an Apama application,
including from MemoryStore tables (see "Exposing in-memory or persistent data as DataViews"
in Developing Apama Applications), and from EPL applications that use Apama's DataView EPL
API, which is also known as the DataView Service (see "Making Application Data Available to
Clients" in Developing Apama Applications).

Apama provides a Scenario Service API in Java and .NET for working with scenarios
programmatically in external clients such as customuser interfaces. Formanually interactingwith
scenarios, Apama provides a Scenario Browser view in Software AG Designer (see also "Using
the Scenario Browser view" inUsing Apama with Software AG Designer) and a standalone tool. The
Apama Scenario ServiceAPI is layered on top of the EventServiceAPIwhich is described in “Event
Service API” on page 545.

If you have scenarios that update frequently, you might need to reduce the frequency of update
events sent by the correlator. See "Controlling the update frequency" in Building and Using Apama
Dashboards.

For a full reference of the Scenario Service API in the different languages, refer to the following:

API Reference for Java (Javadoc)

API Reference for .NET

For examples of using the Scenario Service API, see the following directories of your Apama
installation:

samples\engine_client\java\ScenarioService

samples\engine_client\dotnet\ScenarioService

Connecting Apama Applications to External Components 10.11.3 547

The key elements

The Scenario Service API mainly consists of the following interfaces:

IScenarioService

For Java, this is com.apama.services.scenario.IScenarioService.

For .NET, this is Apama.Services.Scenario.IScenarioService.

IScenarioDefinition

For Java, this is com.apama.services.scenario.IScenarioDefinition.

For .NET, this is Apama.Services.Scenario.IScenarioDefinition.

IScenarioInstance

For Java, this is com.apama.services.scenario.IScenarioInstance.

For .NET, this is Apama.Services.Scenario.IScenarioInstance.

ScenarioService

The IScenarioService interface is used to establish communication with the correlator and to
provide access to the scenario definitions in the correlator. The ScenarioServiceFactory class is
used to create the ScenarioService object that implements the interface:

For Java, the factory class is com.apama.services.scenario.ScenarioServiceFactory.

For .NET, the factory class is Apama.Services.Scenario.ScenarioServiceFactory.

The API also provides a helper ScenarioServiceConfig class that is used to build a properties map
used by the ScenarioServiceFactorywhen creating a new ScenarioService object:

For Java, the helper class is com.apama.services.scenario.ScenarioServiceConfig.

For .NET, the helper class is Apama.Services.Scenario.ScenarioServiceConfig.

The ScenarioService object provides methods to get the IDs/names of all known scenarios (not
instances) in the correlator. It also provides methods to get the ScenarioDefinition instances for
all known scenarios (not instances) or for specific scenarios.

The ScenarioService object provides the capability to register listeners to get notified of all scenarios
in the correlator as they are discovered. The listener can be passedwhen creating a ScenarioService
object or it can bemanually added later. If the listener ismanually added after the ScenarioService
object has been created, then the applicationmustmanually call methods to discover any scenarios
that the service discovered before the application listener was added. Listeners are also notified
for other properties. Listeners can be added which get notified only when some specific property
is changed. See the Javadoc or .NET documentation for a full list of the supported properties.

If the ScenarioService is no longer needed, a cleanup should be performed by calling close() for
Java or Dispose() for .NET, which will disconnect it and also ensure that any started background
threads have been terminated.

548 Connecting Apama Applications to External Components 10.11.3

32 Scenario Service API

ScenarioDefinition

The IScenarioDefinition interface is used to represent a scenario (not an instance) that is running
in the correlator. ScenarioDefinition instances are obtained by calling the appropriate methods
on the ScenarioService.

The ScenarioDefinition object provides methods to obtain meta-information about the scenario,
such as the scenario's input and output parameter names and types. The object also provides
methods to access all or specific instances, create new instances, and add and remove listeners for
property changes.

ScenarioInstance

The IScenarioInstance interface is used to represent a single instance of a scenario. The
ScenarioInstance is returned bymethods of the ScenarioDefinition object that are used to discover
and create new scenario instances. The ScenarioInstance has methods to get/set the values of the
instance's parameters as well as to delete the instance. The interface also has methods to add and
remove listeners for property changes.

To protect the security of personal data of the users who created instances of scenarios, see
"Protecting Personal Data in Apama Applications" in Developing Apama Applications.

Thread safety

The Scenario Service API is thread-safe. Note that unlike other parts of the Apama API, Scenario
Service listener callbacksmay be invokedwhile locks internal to the Scenario Service are held. For
this reason, it is not safe to call Scenario Service methods while holding any application-defined
lock that might also be acquired within a Scenario Service property change listener, as this may
result in a deadlock.

Connecting Apama Applications to External Components 10.11.3 549

32 Scenario Service API

550 Connecting Apama Applications to External Components 10.11.3

32 Scenario Service API

	Table of Contents
	About this Guide
	Documentation roadmap
	Online Information and Support
	Data Protection

	I Working with Connectivity Plug-ins
	1 Getting Started with Connectivity Plug-ins
	Concepts
	Adding the connectivity bundles
	Specifying the main settings in the properties file
	Specifying the settings for the connectivity chains in the YAML file
	Controlling how the correlator interacts with a chain
	Using codecs
	Writing EPL

	2 Using Connectivity Plug-ins
	Overview of using connectivity plug-ins
	Static and dynamic connectivity chains
	Configuration file for connectivity plug-ins
	Host plug-ins and configuration
	Translating EPL events using the apama.eventMap host plug-in
	Using reliable transports
	Creating dynamic chains from EPL
	Sending and receiving events with connectivity plug-ins
	Deploying plug-in libraries

	3 Developing Connectivity Plug-ins
	Chain components and messages
	Requirements of a plug-in class
	Requirements of a transport chain manager plug-in class
	Building plug-ins
	C++ data types
	Map contents used by the apama.eventMap host plug-in
	Metadata values
	Lifetime of connectivity plug-ins
	Creating dynamic chains from a chain manager plug-in
	User-defined status reporting from connectivity plug-ins
	Logging and configuration
	Threading
	Developing reliable transports
	General notes for developing transports

	II Standard Connectivity Plug-ins
	4 The Universal Messaging Transport Connectivity Plug-in
	About the Universal Messaging transport
	Overview of using Universal Messaging in Apama applications
	Setting up Universal Messaging for use by Apama
	Configuring the Universal Messaging connectivity plug-in
	EPL and Universal Messaging channels
	Using Universal Messaging connectivity from EPL
	Monitoring Apama application use of Universal Messaging

	5 The MQTT Transport Connectivity Plug-in
	About the MQTT transport
	Using MQTT connectivity from EPL
	Loading the MQTT transport
	Configuring the connection to MQTT
	Mapping events between MQTT messages and EPL
	Payload for the MQTT message
	Wildcard topic subscriptions
	Metadata for the MQTT message
	Restrictions

	6 The Digital Event Services Transport Connectivity Plug-in
	About the Digital Event Services transport
	Using Digital Event Services connectivity from EPL
	Reliable messaging with Digital Event Services

	7 The HTTP Server Transport Connectivity Plug-in
	About the HTTP server transport
	Loading the HTTP server transport
	Configuring the HTTP server transport
	Handling responses in EPL
	Serving static files
	Mapping events between EPL and HTTP server requests
	HTTP server security
	Monitoring status for the HTTP server

	8 The HTTP Client Transport Connectivity Plug-in
	About the HTTP client transport
	Loading the HTTP client transport
	Configuring the HTTP client transport
	Mapping events between EPL and HTTP client requests
	Monitoring status for the HTTP client
	Configuring dynamic connections to services
	Using predefined generic event definitions to invoke HTTP services with JSON and string payloads

	9 The Kafka Transport Connectivity Plug-in
	About the Kafka transport
	Loading the Kafka transport
	Configuring the connection to Kafka (dynamicChainManagers)
	Configuring message transformations (dynamicChains)
	Payload for the Kafka message
	Metadata for the Kafka message

	10 The Cumulocity IoT Transport Connectivity Plug-in
	About the Cumulocity IoT transport
	Configuring the Cumulocity IoT transport
	Loading the Cumulocity IoT transport
	Using managed objects
	Using alarms
	Using events
	Using measurements
	Using measurement fragments
	Using operations
	Receiving update notifications
	Paging Cumulocity IoT queries
	Invoking other parts of the Cumulocity IoT REST API
	Invoking microservices
	Monitoring status for Cumulocity IoT
	Finding tenant options
	Getting user details
	Sample EPL

	11 Codec Connectivity Plug-ins
	The String codec connectivity plug-in
	The Base64 codec connectivity plug-in
	The JSON codec connectivity plug-in
	The Classifier codec connectivity plug-in
	The Mapper codec connectivity plug-in
	The Batch Accumulator codec connectivity plug-in
	The Message List codec connectivity plug-in
	The Unit Test Harness codec connectivity plug-in
	The Diagnostic codec connectivity plug-in

	III Correlator-Integrated Support for the Java Message Service (JMS)
	12 Using the Java Message Service (JMS)
	Overview of correlator-integrated messaging for JMS
	Getting started with simple correlator-integrated messaging for JMS
	Getting started with reliable correlator-integrated messaging for JMS
	Mapping Apama events and JMS messages
	Dynamic senders and receivers
	Durable topics
	Receiver flow control
	Monitoring correlator-integrated messaging for JMS status
	Logging correlator-integrated messaging for JMS status
	JMS configuration reference
	Designing and implementing applications for correlator-integrated messaging for JMS
	Diagnosing problems when using JMS
	JMS failures modes and how to cope with them

	IV Working with IAF Plug-ins
	13 The Integration Adapter Framework
	Overview
	Architecture
	The transport layer
	The codec layer
	The Semantic Mapper layer
	Contents of the IAF

	14 Using the IAF
	The IAF runtime
	IAF Management – Managing a running adapter I
	IAF Client – Managing a running adapter II
	IAF Watch – Monitoring running adapter status
	The IAF configuration file
	IAF samples

	15 C/C++ Transport Plug-in Development
	The C/C++ transport plug-in development specification
	Transport example
	Getting started with transport layer plug-in development

	16 C/C++ Codec Plug-in Development
	The C/C++ codec plug-in development specification
	Transport example
	Getting started with codec layer plug-in development

	17 C/C++ Plug-in Support APIs
	Logging from IAF plug-ins in C/C++
	Using the latency framework

	18 Transport Plug-in Development in Java
	The transport plug-in development specification for Java
	Example
	Getting started with Java transport layer plug-in development

	19 Java Codec Plug-in Development
	The codec plug-in development specification for Java
	Java codec example
	Getting started with Java codec layer plug-in development

	20 Plug-in Support APIs for Java
	Logging from IAF plug-ins in Java
	Using the latency framework

	21 Monitoring Adapter Status
	IAFStatusManager
	Application interface
	Returning information from the getStatus method
	Connections and other custom properties
	Asynchronously notifying IAFStatusManager of connection changes
	StatusSupport
	DataView support

	22 Out of Band Connection Notifications
	Mapping example
	Ordering of out of band notifications

	23 The Event Payload

	V Standard IAF Plug-ins
	24 The Database Connector IAF Adapter (ADBC)
	Overview of using ADBC
	Registering your ODBC database DSN on Windows
	Adding an ADBC adapter to an Apama project
	Configuring the Apama database connector
	The ADBCHelper application programming interface
	The ADBC Event application programming interface
	The Visual Event Mapper
	Playback
	Sample applications
	Format of events in .sim files

	25 The File IAF Adapter (JMultiFileTransport)
	File adapter plug-ins
	File adapter service monitor files
	Adding the File adapter to an Apama project
	Configuring the File adapter
	Overview of event protocol for communication with the File adapter
	Opening files for reading
	Specifying file names in OpenFileForReading events
	Opening comma separated values (CSV) files
	Opening fixed width files
	Sending the read request
	Requesting data from the file
	Receiving data
	Opening files for writing
	LineWritten event
	Monitoring the File adapter

	26 The Basic File IAF Adapter (FileTransport/JFileTransport)
	27 Codec IAF Plug-ins
	The String codec IAF plug-in
	The Null codec IAF plug-in
	The Filter codec IAF plug-in
	The XML codec IAF plug-in
	The CSV codec IAF plug-in
	The Fixed Width codec IAF plug-in

	VI Developing Custom Clients
	28 The Client Software Development Kits
	The client libraries
	Working with event objects
	Logging
	Exception handling and thread safety

	29 Engine Management API
	30 Engine Client API
	31 Event Service API
	32 Scenario Service API

